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Roots and Coefficients of Quadratic Polynomials 
 
 
A quadratic equation is one in which the highest power to which x is raised is 2. The 
general quadratic may thus be represented as: 
 

2ax bx c   
 
You should already be familiar with the quadratic formula for finding roots of a 
quadratic polynomial. 
 
 
Quadratic Formula 
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Example 
 

2Solve 3 5 7 0x x    
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The quadratic formula is:
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The roots of a quadratic are the values of x for which it is zero, and so at the roots the 
graph of 2ax bx c   crosses the x-axis.  
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Geometric intuition indicates that  quadratic may have 0, 1 (a repeated root) or 2 real 
roots.   That is 
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(Note: Strictly speaking, all quadratics have 2 roots, but these may be “complex 
numbers”.  The subject of complex numbers is more advanced, and is introduced in 
another unit.  A quadratic with no real roots has two complex roots.) 
 
 
Discriminant 
 
Examination of the general form of the quadratic polynomial, and its solution 
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Indicates that whether the quadratic has 2, 1 or 0 roots depends on the value of  
 

2 4b ac    
 
This quantity is called the “discriminant”. 
 
If the discriminant is greater than zero then there will be 2 roots; if it is exactly equal 
to zero then there will be just 1 root; and if it is less than zero then the expression 
 

2 4b ac  
 



 
 
 

            © blacksacademy.net 
 

 
3 

has no solution, so there are no (real) roots. 
 
In summary 
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Relationships between the roots and coefficients of a quadratic polynomial 
 
Suppose 2 0ax bx c    has roots  and   ; then 
 

2 0 ( )( )

If the quadratic is written in this factorised form, the roots are immediately obvious.

Letting the right hand side equal zero gives ,  .

Dividing both sides by  and multiplyi
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By equalting coefficients

   

(Note: these are called the sum and product of the roots respectively, and have significance

in hi
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gher order equations)   
 
Many questions using these principles involve the algebraic manipulation of the sum 
& product of the roots.  
 
 
 
 
 

Example 
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2

2 2

If the equation 6 12 16 0 has roots α  and β, find the equations with roots
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Solution 
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This is the value of  for the new equation.
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