Roots and Coefficients of Quadratic Polynomials

A quadratic equation is one in which the highest power to which x is raised is 2 . The general quadratic may thus be represented as:
$a x^{2}+b x+c$
You should already be familiar with the quadratic formula for finding roots of a quadratic polynomial.

Quadratic Formula

If $a x^{2}+b x+c=0$
Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

Example

Solve $3 x^{2}-5 x-7=0$
Answer

$$
3 x^{2}-5 x-7=0
$$

The quadratic formula is:
If $a x^{2}+b x+c=0$
Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Thus, here

$$
a=3, b=-5, c=-7
$$

$$
x=\frac{5 \pm \sqrt{(-5)^{2}-(4 \times 3 \times-7)}}{6}=\frac{5 \pm \sqrt{109}}{6}
$$

$$
=\frac{5+10.44}{6} \text { or } \frac{5-10.44}{6}
$$

$$
=2.57 \text { or }-0.91 \text { (2.D.P) }
$$

The roots of a quadratic are the values of x for which it is zero, and so at the roots the graph of $a x^{2}+b x+c$ crosses the x-axis.

Geometric intuition indicates that quadratic may have 0,1 (a repeated root) or 2 real roots. That is

(Note: Strictly speaking, all quadratics have 2 roots, but these may be "complex numbers". The subject of complex numbers is more advanced, and is introduced in another unit. A quadratic with no real roots has two complex roots.)

Discriminant

Examination of the general form of the quadratic polynomial, and its solution
If $a x^{2}+b x+c=0$
Then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
Indicates that whether the quadratic has 2,1 or 0 roots depends on the value of
$\Delta=b^{2}-4 a c$
This quantity is called the "discriminant".
If the discriminant is greater than zero then there will be 2 roots; if it is exactly equal to zero then there will be just 1 root; and if it is less than zero then the expression
$\sqrt{b^{2}-4 a c}$
has no solution, so there are no (real) roots.
In summary
If $\Delta=b^{2}-4 a c>0$ then $a x^{2}+b x+c$ has 2 real roots
If $\Delta=b^{2}-4 a c=0$ then $a x^{2}+b x+c$ has 1 real root
If $\Delta=b^{2}-4 a c<0$ then $a x^{2}+b x+c$ has 0 real roots

Relationships between the roots and coefficients of a quadratic polynomial

Suppose $a x^{2}+b x+c=0$ has roots α and β; then
$a x^{2}+b x+c=0=(x-\alpha)(x-\beta)$

If the quadratic is written in this factorised form, the roots are immediately obvious.
Letting the right hand side equal zero gives $x=\alpha, x=\beta$.
Dividing both sides by a and multiplying out the brackets on the right gives
$x^{2}+\frac{b}{a} x+\frac{c}{a}=0=x^{2}-(\alpha+\beta) x+\alpha \cdot \beta$

By equalting coefficients
$\alpha+\beta=-\frac{b}{a} \quad \alpha \beta=\frac{c}{a}$
(Note: these are called the sum and product of the roots respectively, and have significance in higher order equations)

Many questions using these principles involve the algebraic manipulation of the sum \& product of the roots.

Example

If the equation $6 x^{2}-12 x+16=0$ has roots α and β, find the equations with roots
(i) $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
(ii) $\frac{1}{\alpha^{2}}$ and $\frac{1}{\beta^{2}}$

Solution
(i) $\alpha+\beta=\frac{-b}{a}=\frac{-(-6)}{3}=2$

$$
\begin{aligned}
& \alpha \beta=\frac{c}{a}=\frac{8}{3} \\
& \frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{2}{8 / 3}=\frac{3}{4}
\end{aligned}
$$

This is the value of $\frac{-b}{a}$ for the new equation.

$$
\left(\frac{1}{\alpha}\right)\left(\frac{1}{\beta}\right)=\frac{1}{\beta}=\frac{3}{8}
$$

This is the value of β for the new equation

Thus, the new equation is

$$
x^{2}-\frac{3}{4} x+\frac{3}{8} \text { or } \quad 8 x^{2}-6 x+3
$$

(ii) $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}=\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)^{2}-\frac{2}{\alpha \beta}=\left(\frac{3}{4}\right)^{2}-2\left(\frac{3}{8}\right)=\frac{-3}{16}$
$\left(\frac{1}{\alpha^{2}}\right)\left(\frac{1}{\beta^{2}}\right)=\frac{1}{(\alpha \beta)^{2}}=\left(\frac{3}{8}\right)^{2}=\frac{9}{64}$
The new equation is

$$
x^{2}+\frac{3}{16} x+\frac{9}{64}=0 \text { or } 64 x^{2}+12 x+9=0
$$

