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Scalar Fields and Vector Functions 
 
Scalar Field 
 

   For example, let ,  denote a position in two-dimensional space and let ,

represent the pressure at that point.

x y P x y
 

 
The variable P is one-dimensional quantity and is a function of the two variables x and y.  
That is 
 

 ,P P x y  

 
It is an example of a scalar field. Since it is a function of two variables, it is an example 
of a two dimensional scalar field. 
 
A three dimensional scalar field would be a function of three variables and an n 
dimensional scalar field is a function of n variables.  In general an n-dimensional scalar 
field is a function. 
 

 1 2 1 2, ,.. ( , ... )

n

n nx x x x x x



 
 

 
 

 
Practical examples of scalar fields in physics are the assignment of a temperature to 
points of a body, and the pressure of the air of the Earth’s atmosphere.  These are both 
mappings from a three dimensional space to a single real number, and so are examples of 
three dimensional scalar fields. 
 

Example 
 
The Euclidean distance from a point  
 

 , ,x y zr  

 
from a fixed point  
 

 0 0 0, ,x y zp  

 
is an example of a scalar field.  It is given by the formula 
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         2 2 2

0 0 0, ,f f x y z x x y y z z      r  

 
 
Contour Curves 
 
Suppose we have a two-dimensional scalar field  ( , ). Then a curve will

be defined by each specific value that  ( , ) can take. The curve  ( , )   

is called a contour curve of the scalar field.

x y

x y x y k


    

 
(Note that the contour curves of a temperature field are called isotherms and the contour 
curves of a pressure field are called isobars.) 
 

Example 
 

2

2 2

Let

 ( , )

be a scalar field

x y x y



 

 
 

 

2 2

Sketch the contours given by

( , ) 1

( , ) 2

( , ) 3

Solution

We have ( , ) 1

that is 1

This is the equation of the circle with centre the origin 4 radius1. Similary

( , ) 2  is a circle with radiu

x y

x y

x y

x y

x y

x y















 

 s 2  and ( , ) 3 is a circle with radius 3.x y 

 

 



 
 

© blacksacademy.net 
 
 

3 
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A contour map is a map of a surface given by its contours. 
 
If we make a contour map by taking a constant interval between each contour; e.g. 
 

( , ) 10

( , ) 20

( , ) 30

x y

x y

x y









 

 
where the difference between successive contours is always 10 units, then the rate of 
increase or decrease of a scalar field is related to the closeness of the contour curves. The 
closer the contour curves are together the faster the scalar field is changing. 
 
 
Contour Surfaces 
 

2 2 2

2

The idea of a contour curve can be generalised to 3-dimensions.

( , , )

This will give pictorially a series of contour surfaces. For example,

if ( , , )  then the contour surfaces given by

x y z k

x y z x y z

x







  

 2 2  for different values of  are a series of rested spheresy z k k 
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2

.A contour surface can be defined for a -dimensional scalar field

( , ... )

but it is not possible to visualise this in 3-dimensional space.

n

n

x x x  

 
 
Vector functions 
 
We may imagine a particle moving along a contour curve; for example, along the contour 
curve 
 

2 2 1x y   
 
of the scalar field 2 2 ( , )x y x y   .  This movement may be a function of time, or some 
other parameter.  More general the position of a particle in space may be given by a 
vector function 
 

        1 2 3, ,t v t v t v tv  

 
where t is a parameter.  This is a vector function of 3 dimensions, but clearly the concept 
could be applied to 2 dimensions or spaces of dimension greater than 3.  Such a vector 
function may not be always continuous or differentiable, but if it is, then its derivative 
will be defined in the usual way, by 
 

                1 2 3 1 2 3, , , ,
d d d d

t v t v t v t t v t v t v t
dt dt dt dt

      
 

v v  

 
That is, by differentiating each of the components of the vector function. 
 
The usual rules for differentiating scalar multiples and sum of functions applies to vector 
functions.  Specifically 
 

   

   

d d
c c c c

dt dt

d d d

dt dt dt

  

       

v v v v

u v u v u v u v

 

 



 
 

© blacksacademy.net 
 
 

5 

 
 
Differentiation of scalar and vector products. 

 
Suppose 1 2 3f f f  F i j k  is a vector field 

 
The functions 1, 2 3,f f f  are its Cartesian coordinates this function. Then the vector field 

can be differentiated according to the obvious rule. 
 

31 1 dtdf dfd

dt dt dt dt
  

F
i j k  

 
Then differentiation of scalar and vector (cross) products of vectors follows the normal 
product (Leibniz) rule. 
 

 

 

d d d

dt dt dt

d d d

dt dt dt

  

    

F G
F G G F

F G
F G G F

 

 
We will prove the result for the cross product.  That is  
 

   *
d d d

dt dt dt
    

F G
F G G F  

 
 Let  
 

1 2 3 1 2 2  f f f and g g g     F i j k G i j k  

 

 then the left-hand-side of *  is   

 

1 2 3

1 2 3

LHS
d

dt

d
f f f

dt
g g g

 



F G

i j k  
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      

         

   

2 3 3 1 1 2

2 3 3 1 1 2

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 2 3 1 1 3 1 2 2 1

2 3 2 3 3 2 3 2 3 1 3 1 1 3 1 3

1 2 1 2 2 1

f f f f f f

g g g g g g

d
f g f g f g f g f g f g

dt
d d d d d

f g f g f g f g f g f g
dt dt dt dt dt

f g f g f g f g f g f g f g f g

f g f g f g

  

     

               
     

              

     

i j

i j k

i j k

i j

 2 1f g  k

 

However the right-hand side of (*) is 
 

       

 

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3
1 2 3

2 3 3 1 1 2
2 3 3 1 1 2

2 3 3 1 2 3 3 11 2 1 2

2 3 3 2 3 1

RHS
d d

dt dt

f f f g g g f f f g g g

f f f f f f

g g g g g g

f f f f f ff f f f f f

g g g g g g g gg g g g

f g f g f g

   

                

   

  

     
     

     

    

F G
G F

i j k i j k i j k i j k

i j k i j k

i j k i j k

i    
     

1 3 1 2 2 1

2 3 3 2 3 1 1 3 1 2 2 1

LHS

f g f g f g

f g f g f g f g f g f g

   

          



j k

i j k

 

 


