Scalar Fields and Vector Functions

Scalar Field

For example, let (x, y) denote a position in two-dimensional space and let $P(x, y)$ represent the pressure at that point.

The variable P is one-dimensional quantity and is a function of the two variables x and y. That is
$P=P(x, y)$
It is an example of a scalar field. Since it is a function of two variables, it is an example of a two dimensional scalar field.

A three dimensional scalar field would be a function of three variables and an n dimensional scalar field is a function of n variables. In general an n-dimensional scalar field is a function.
$\phi\left\{\begin{aligned} \mathbb{R}^{n} & \rightarrow \mathbb{R} \\ \left(x_{1}, x_{2}, \ldots x_{n}\right) & \rightarrow \phi\left(x_{1}, x_{2} \ldots x_{n}\right)\end{aligned}\right.$
Practical examples of scalar fields in physics are the assignment of a temperature to points of a body, and the pressure of the air of the Earth's atmosphere. These are both mappings from a three dimensional space to a single real number, and so are examples of three dimensional scalar fields.

Example

The Euclidean distance from a point

$$
\mathbf{r}=(x, y, z)
$$

from a fixed point

$$
\mathbf{p}=\left(x_{0}, y_{0}, z_{0}\right)
$$

is an example of a scalar field. It is given by the formula
© blacksacademy.net

$$
f(\mathbf{r})=f(x, y, z)=\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}}
$$

Contour Curves

Suppose we have a two-dimensional scalar field $\phi(x, y)$. Then a curve will be defined by each specific value that $\phi(x, y)$ can take. The curve $\phi(x, y)=k$ is called a contour curve of the scalar field.
(Note that the contour curves of a temperature field are called isotherms and the contour curves of a pressure field are called isobars.)

Example

Let
$\mathbb{R}^{2} \rightarrow \mathbb{R}$
$\phi(x, y)=x^{2}+y^{2}$
be a scalar field
Sketch the contours given by

$$
\begin{aligned}
& \phi(x, y)=1 \\
& \phi(x, y)=2 \\
& \phi(x, y)=3
\end{aligned}
$$

Solution

We have $\phi(x, y)=1$
that is $x^{2}+y^{2}=1$
This is the equation of the circle with centre the origin 4 radius1. Similary $\phi(x, y)=2$ is a circle with radius $\sqrt{2}$ and $\phi(x, y)=3$ is a circle with radius $\sqrt{3}$.
© blacksacademy.net

A contour map is a map of a surface given by its contours.
If we make a contour map by taking a constant interval between each contour; e.g.
$\phi(x, y)=10$
$\phi(x, y)=20$
$\phi(x, y)=30$
where the difference between successive contours is always 10 units, then the rate of increase or decrease of a scalar field is related to the closeness of the contour curves. The closer the contour curves are together the faster the scalar field is changing.

Contour Surfaces

The idea of a contour curve can be generalised to 3-dimensions.
$\phi(x, y, z)=k$

This will give pictorially a series of contour surfaces. For example,
if $\phi(x, y, z)=x^{2}+y^{2}+z^{2}$ then the contour surfaces given by $x^{2}+y^{2}+z^{2}=k$ for different values of k are a series of rested spheres
© blacksacademy.net
.A contour surface can be defined for a n-dimensional scalar field
$\phi\left(x, x_{2} \ldots x_{n}\right)$
but it is not possible to visualise this in 3-dimensional space.

Vector functions

We may imagine a particle moving along a contour curve; for example, along the contour curve
$x^{2}+y^{2}=1$
of the scalar field $\phi(x, y)=x^{2}+y^{2}$. This movement may be a function of time, or some other parameter. More general the position of a particle in space may be given by a vector function
$\mathbf{v}(t)=\left(v_{1}(t), v_{2}(t), v_{3}(t)\right)$
where t is a parameter. This is a vector function of 3 dimensions, but clearly the concept could be applied to 2 dimensions or spaces of dimension greater than 3 . Such a vector function may not be always continuous or differentiable, but if it is, then its derivative will be defined in the usual way, by
$\frac{d}{d t} \mathbf{v}(t)=\left(\frac{d}{d t} v_{1}(t), \frac{d}{d t} v_{2}(t), \frac{d}{d t} v_{3}(t)\right) \quad \mathbf{v}^{\prime}(t)=\left(v_{1}^{\prime}(t), v_{2}^{\prime}(t), v_{3}^{\prime}(t)\right)$

That is, by differentiating each of the components of the vector function.
The usual rules for differentiating scalar multiples and sum of functions applies to vector functions. Specifically

$$
\begin{array}{ll}
\frac{d}{d t}(c \mathbf{v})=c \frac{d}{d t} \mathbf{v} & (c \mathbf{v})^{\prime}=c \mathbf{v}^{\prime} \\
\frac{d}{d t}(\mathbf{u}+\mathbf{v})=\frac{d}{d t} \mathbf{u}+\frac{d}{d t} \mathbf{v} & (\mathbf{u}+\mathbf{v})^{\prime}=\mathbf{u}^{\prime}+\mathbf{v}^{\prime}
\end{array}
$$

© blacksacademy.net

Differentiation of scalar and vector products.

Suppose $\mathbf{F}=f_{1} \mathbf{i}+f_{2} \mathbf{j}+f_{3} \mathbf{k}$ is a vector field

The functions $f_{1,}, f_{2}, f_{3}$ are its Cartesian coordinates this function. Then the vector field can be differentiated according to the obvious rule.
$\frac{d \mathbf{F}}{d t}=\frac{d f_{1}}{d t} \mathbf{i}+\frac{d f_{1}}{d t} \mathbf{j}+\frac{d t_{3}}{d t} \mathbf{k}$
Then differentiation of scalar and vector (cross) products of vectors follows the normal product (Leibniz) rule.
$\frac{d}{d t}(\mathbf{F} \cdot \mathbf{G})=\frac{d \mathbf{F}}{d t} \mathbf{G}+\mathbf{F} \frac{d \mathbf{G}}{d t}$
$\frac{d}{d t}(\mathbf{F} \times \mathbf{G})=\frac{d \mathbf{F}}{d t} \times \mathbf{G}+\mathbf{F} \times \frac{d \mathbf{G}}{d t}$
We will prove the result for the cross product. That is
$\frac{d}{d t}(\mathbf{F} \times \mathbf{G})=\frac{d \mathbf{F}}{d t} \times \mathbf{G}+\mathbf{F} \times \frac{d \mathbf{G}}{d t}$
Let
$\mathbf{F}=f_{1} \mathbf{i}+f_{2} \mathbf{j}+f_{3} \mathbf{k}$ and $\mathbf{G}=g_{1} \mathbf{i}+g_{2} \mathbf{j}+g_{2} \mathbf{k}$
then the left-hand-side of $(*)$ is
LHS $=\frac{d}{d t}(\underline{\mathbf{F} \times \mathbf{G}})$
$=\frac{d}{d t}\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ f_{1} & f_{2} & f_{3} \\ g_{1} & g_{2} & g_{3}\end{array}\right|$
© blacksacademy.net

$$
\begin{aligned}
& =\left|\begin{array}{ll}
f_{2} & f_{3} \\
g_{2} & g_{3}
\end{array}\right| \mathbf{i}+\left|\begin{array}{ll}
f_{3} & f_{1} \\
g_{3} & g_{1}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
f_{1} & f_{2} \\
g_{1} & g_{2}
\end{array}\right| \\
& =\frac{d}{d t}\left\{\left(f_{2} g_{3}-f_{3} g_{2}\right) \mathbf{i}+\left(f_{3} g_{1}-f_{1} g_{3}\right) \mathbf{j}+\left(f_{1} g_{2}-f_{2} g_{1}\right) \mathbf{k}\right\} \\
& =\left(\frac{d}{d t}\left(f_{2} g_{3}\right)-\frac{d}{d t}\left(f_{3} g_{2}\right)\right) \mathbf{i}+\left(\frac{d}{d t}\left(f_{3} g_{1}\right)-\frac{d}{d t}\left(f_{1} g_{3}\right)\right) \mathbf{j}+\left(\frac{d}{d t}\left(f_{1} g_{2}-f_{2} g_{1}\right)\right) \mathbf{k} \\
& =\left(f_{2}^{\prime} g_{3}+f_{2} g_{3}^{\prime}-f_{3}^{\prime} g_{2}-f_{3}^{\prime} g_{2}\right) \mathbf{i}+\left(f_{3}^{\prime} g_{1}+f_{3} g_{1}^{\prime}-f_{1}^{\prime} g_{3}-f_{1} g_{3}^{\prime}\right) \mathbf{j} \\
& +\left(f_{1}^{\prime} g_{2}+f_{1} g_{2}^{\prime}-f_{2}^{\prime} g_{1}-f_{2} g_{1}^{\prime}\right) \mathbf{k}
\end{aligned}
$$

However the right-hand side of $\left({ }^{*}\right)$ is

$$
\begin{aligned}
\text { RHS } & =\frac{d \mathbf{F}}{d t} \times \mathbf{G}+\mathbf{F} \times \frac{d \mathbf{G}}{d t} \\
& =\left(f_{1}^{\prime} \mathbf{i}+f_{2}^{\prime} \mathbf{j}+f_{3}^{\prime} \mathbf{k}\right) \times\left(g_{1} \mathbf{i}+g_{2} \mathbf{j}+g_{3} \mathbf{k}\right)+\left(f_{1} \mathbf{i}+f_{2} \mathbf{j}+f_{3} \mathbf{k}\right) \times\left(g_{1}^{\prime} \mathbf{i}+g_{2}^{\prime} \mathbf{j}+g_{3}^{\prime} \mathbf{k}\right) \\
& =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
f_{1}^{\prime} & f_{2}^{\prime} & f_{3}^{\prime} \\
g_{1} & g_{2} & g_{3}
\end{array}\right|+\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
f_{1} & f_{2} & f_{3} \\
g_{1}^{\prime} & g_{2}^{\prime} & g_{3}^{\prime}
\end{array}\right| \\
& =\left|\begin{array}{ll}
f_{2}^{\prime} & f_{3}^{\prime} \\
g_{2} & g_{3}
\end{array}\right| \mathbf{i}+\left|\begin{array}{ll}
f_{3}^{\prime} & f_{1}^{\prime} \\
g_{3} & g_{1}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
f_{1}^{\prime} & f_{2}^{\prime} \\
g_{1} & g_{2}
\end{array}\right| \mathbf{k}+\left|\begin{array}{ll}
f_{2} & f_{3} \\
g_{2}^{\prime} & g_{3}^{\prime}
\end{array}\right| \mathbf{i}+\left|\begin{array}{ll}
f_{3} & f_{1} \\
g_{3}^{\prime} & g_{1}^{\prime}
\end{array}\right| \mathbf{j}+\left|\begin{array}{ll}
f_{1} & f_{2} \\
g_{1}^{\prime} & g_{2}^{\prime}
\end{array}\right| \mathbf{k} \\
& =\left(\begin{array}{l}
\left.f_{2}^{\prime} g_{3}-f_{3}^{\prime} g_{2}\right) \mathbf{i}+\left(f_{3}^{\prime} g_{1}-f_{1}^{\prime} g_{3}\right) \mathbf{j}+\left(f_{1}^{\prime} g_{2}-f_{2} g_{1}\right) \mathbf{k} \\
\\
\end{array}\right. \\
& +\left(f_{2} g_{3}^{\prime}-f_{3} g_{2}^{\prime}\right) \mathbf{i}+\left(f_{3} g_{1}^{\prime}-f_{1} g_{3}^{\prime}\right) \mathbf{j}+\left(f_{1} g_{2}^{\prime}-f_{2} g_{1}^{\prime}\right) \mathbf{k}
\end{aligned}
$$

