Scalar Fields and Vector Functions
Scalar Field

For example, let (x, y) denote a position in two-dimensional space and let P(x, y)

represent the pressure at that point.

The variable P is one-dimensional quantity and is a function of the two variables x and y.
That is

P= P(x,y)

It is an example of a scalar field. Since it is a function of two variables, it is an example
of a two dimensional scalar field.

A three dimensional scalar field would be a function of three variables and an n
dimensional scalar field is a function of n variables. In general an n-dimensional scalar
field is a function.

R" > R
¢ (x,%,,..%, ) > ¢(x,,x,...x,)

Practical examples of scalar fields in physics are the assignment of a temperature to
points of a body, and the pressure of the air of the Earth’s atmosphere. These are both
mappings from a three dimensional space to a single real number, and so are examples of
three dimensional scalar fields.

Example

The Euclidean distance from a point
r=(x,y,z)

from a fixed point

P :(xo’yo’zo)

is an example of a scalar field. It is given by the formula

© blacksacademy.net



F(0)=f(xer.2) =y (x5 ) +(r=3) +(z-2)

Contour Curves

Suppose we have a two-dimensional scalar field ¢ (x, y). Then a curve will
be defined by each specific value that ¢ (x, ) can take. The curve ¢ (x,y) = k
is called a contour curve of the scalar field.

(Note that the contour curves of a temperature field are called isotherms and the contour
curves of a pressure field are called isobars.)

Example

Let
R* >R
¢ (x,y)=x"+y’

be a scalar field

Sketch the contours given by

P(x,y)=1
P(x,y)=2
P(x,y)=3
Solution

We have ¢(x,y) =1
thatis x* + y* =1
This is the equation of the circle with centre the origin 4 radius1. Similary

@¢(x,y) =2 is acircle with radius V2 and ¢(x,y) =3 is a circle with radius NEY
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A contour map is a map of a surface given by its contours.

If we make a contour map by taking a constant interval between each contour; e.g.

¢(x,y) =10
$(x,y) =20
$(x,y) =30

where the difference between successive contours is always 10 units, then the rate of
increase or decrease of a scalar field is related to the closeness of the contour curves. The
closer the contour curves are together the faster the scalar field is changing.

Contour Surfaces

The idea of a contour curve can be generalised to 3-dimensions.
P(x,y,z) =k

This will give pictorially a series of contour surfaces. For example,
if ¢(x,y,z) = x> + y* + z° then the contour surfaces given by

x> +y° +z* = k for different values of k are a series of rested spheres
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.A contour surface can be defined for a n-dimensional scalar field

P(x,x,..x,)

but it is not possible to visualise this in 3-dimensional space.

Vector functions

We may imagine a particle moving along a contour curve; for example, along the contour
curve

x>+ =1
of the scalar field ¢ (x,y) = x> + y>. This movement may be a function of time, or some

other parameter. More general the position of a particle in space may be given by a
vector function

v(t)= (v (0).v, ()% (1))

where ¢ is a parameter. This is a vector function of 3 dimensions, but clearly the concept
could be applied to 2 dimensions or spaces of dimension greater than 3. Such a vector
function may not be always continuous or differentiable, but if it is, then its derivative
will be defined in the usual way, by

Lv ()= Do 1) (1) )| V()= (0 (0 1)

—v (t),—V ,——V
dt de 'Y de e
That is, by differentiating each of the components of the vector function.

The usual rules for differentiating scalar multiples and sum of functions applies to vector
functions. Specifically

%(cv) =C%V (cv)' =cv
%(u V):%quEV (u+v),=u'+v'
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Differentiation of scalar and vector products.

Suppose F = fii+ f,j+ fk is a vector field

The functions f, f,, f; are its Cartesian coordinates this function. Then the vector field

can be differentiated according to the obvious rule.

Ezd_ﬁi+d_ﬁj+%k
dt dt dt dt

Then differentiation of scalar and vector (cross) products of vectors follows the normal
product (Leibniz) rule.

i(F.G)ZEGJer_G
dt dt dt
i(FxG)z£xG+de—G
dt dt dt

We will prove the result for the cross product. That is

i(FxG)=EXG+de—G (*)
dt dt dt

Let
F=fi+f,j+fi)kand G=gi+g,j+g)k

then the left-hand-side of (*) is

LHS = g(F xG)

t
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j+

+(f1,g2 +f1g2' _fzrgl _fzgl,)k

However the right-hand side of (*) is

RHSZ%XG-FFXQI—G

dr
(fl'i+fz'J'+f3'k)><(gli+g2j+g3k)+(f1i+fzj+f;k)X(gl'ng'Hga'k)
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(Ko =feiv(£ea-fe)i+(fe-fek

t e~ e Jiv(f -~ fig Ji+(her - fg K
=LHS
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