Scalar multiples of a Poisson variable

If the interval over which a Poisson distribution is taken is doubled, then the mean of the Poisson distribution is doubled; likewise, if the interval is halved, then the mean is also halved.

If $X \sim \operatorname{Po}(\mu)$ in the interval I
Then $X \sim P o(n \mu)$ in the interval $n I$

Example

An electrical relay (that is, an electrical switch) makes a connection within $1 \mathrm{~ns}\left(1 \times 10^{-9} \mathrm{~s}\right)$ of being switched on 99 out of every 100 trials. (i) Find the probability that in 300 trials the switch will fail to connect within 1 ns on more than 4 occasions. (ii) Find also the probability that in 20 trials the switch fails to connect within 1 ns on 0 occasions.

Answer
(i) In 100 trials we expect 1 failed connection, hence
$Y \sim P o(1)$ in 100 trials
Therefore, in 300 trials we expect 3 failures on average, and if Y denotes the number of failures in 300 trials, then

$$
X \sim P o(3)
$$

Then, we require
$P(X>4)=1-P(X=0)-P(X=1)-P(X=2)-P(X=3)-P(X=4)$
Now
$P(X=0)=e^{-3}=0.049787$
$P(X=1)=3 \times P(X=0)=0.149361$
$P(X=2)=\frac{3}{2} \times P(X=1)=0.224042$
$P(X=3)=\frac{3}{3} \times P(X=2)=0.224042$
$P(X=4)=\frac{3}{4} \times P(X=3)=0.168031$
$P(X \leq 4)=0.815263$
$P(X>4)=0.184737=0.18$ (2.S.F.)
(ii) $Y \sim P o(1)$ in 100 trials
$X \sim \operatorname{Po}(0.2)$ in 20 trials $P(X=0)=e^{-0.2}=0.8187=0.82$ (2.S.F.)

