## Solution of second order inhomogeneous constant coefficient differential equations

## Prerequisites

You should already be familiar with the solution of homogeneous, constant coefficient second order differential equations.

Second order homogeneous constant coefficient differential equations
Given $a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c x=0$ where $a, b$ and $c$ are constants, the auxiliary equation is
$a m^{2}+b m+c=0$
with roots $m_{1}$ and $m_{2}$ and discriminant $\Delta=b^{2}-4 a c$.
If $\Delta>0$ the roots $m_{1}$ and $m_{2}$ are real and distinct. The solution to the original differential equation takes the form $x(t)=A e^{m_{1} t}+B e^{m_{2} t}$ where $A$ and $B$ are constants whose particular values may be determined by given additional boundary conditions.
If $\Delta=0$ then $m_{1}=m_{2}$ and the root is real and repeated. Then the solution to the original differential equation takes the form $x(t)=(A+B t) e^{m_{1} t}$ where $A$ and $B$ are constants whose particular values may be determined by given additional boundary conditions.
If $\Delta<0$ the roots $m_{1}$ and $m_{2}$ are conjugate complex numbers where

$$
\begin{aligned}
& m_{1}=\alpha+i \beta \\
& m_{2}=\alpha-i \beta
\end{aligned}
$$

Then the solution to the original differential equation takes the form
$x(t)=e^{\alpha t}(A \sin \beta t+B \cos \beta t)$
where $A$ and $B$ are constants whose particular values may be determined by given additional boundary conditions.

## Inhomogeneous equations

A second order inhomogeneous, constant coefficient differential equation has the form
$a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c=f(t)$
where $f(t) \neq 0$. The function $f(t)$ is called the forcing function. To solve this type of equation we split the problem into two parts.
(1) We find the solution to the complementary homogeneous equation
$a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c=0$
This is called the complementary function and is denoted $x_{c}=x_{c}(t)$
(2) By trial and error (further illustrated below) we find the particular solution (a function) to the inhomogeneous equation, which is denoted $x_{p}=x_{p}(t)$

Then the general solution is

$$
x(t)=x_{c}(t)+x_{p}(t)
$$

In other words, we add the particular to the complementary function. We will now illustrate this method.

## Example (1)

Find the general solution to $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=2$

## Solution

The homogeneous equation is

$$
\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=0
$$

The auxiliary equation is

$$
\begin{aligned}
& m^{2}+5 m+6=0 \\
& (m+3)(m+2)=0 \\
& m_{1}=-3, m_{2}=-2 \\
& \text { Hence } x_{c}(t)=A e^{-3 t}+B e^{-2 t}
\end{aligned}
$$

© blacksacademy.net

Now we have to find the particular solution. The forcing function is $f(t)=2$. It takes the form of a constant function $f(t)=k(k$ constant $)$. To find the particular function, we will try $x_{p}(t)=k$ and deduce the value of $k$ by trial and error.

Let $x_{p}(t)=k$. Then
$\frac{d}{d t} x_{p}(t)=0, \quad \frac{d_{2}}{d t^{2}} x_{p}(t)=0$
This function $x_{p}$ must satisfy the differential equation. Hence, substituting
$\frac{d}{d t} x_{p}(t)=0, \quad \frac{d_{2}}{d t^{2}} x_{p}(t)=0$ into $\frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}+6 x=2$ we obtain
$6 k=2$
$k=\frac{2}{6}=\frac{1}{3}$
Hence $x_{p}(t)=\frac{1}{3}$.
Then the final solution is the sum of the complementary and particular functions
$x(t)=x_{c}(t)+x_{p}(t)=A e^{-3 x}+B e^{-2 x}+\frac{1}{3}$

## Interpretation

Now we will give a physical illustration of why adding a complementary to a particular function gives the general solution to this type of problem. Imagine a car driving over a bumpy road starting at the origin when time $t=0 \mathrm{~s}$.


The bumpy road has a form described by the function $f(t)$. The car's suspension system is modelled by a differential equation, which in this case will have an auxiliary equation with complex roots. The response to this will be a function describing how the car's undercarriage oscillates as a result of the motion over the bumpy road. Intuitively, this response depends on the particular nature of the road together with the response of the car's suspension system. On a level road, that is with $f(t)=0$, the response would be given by the solution to the homogeneous
equation $x_{c}(t)$, in other words, it is purely a function of the car's suspension. But the road modifies this response and forces the car to follow the contours of the rough road. That is why the particular function $x_{p}(t)$ will take the same form as the forcing function. Thus the general solution is
$x(t)=x_{c}(t)+x_{p}(t)$
= natural response of the system + particular response due to the forcing function
Thus, when we seek $x_{p}(t)$ we use trial and error. But we narrow down the search by trying functions that have the same form as the forcing function.

## Choosing a function to try

Hence, when seeking the particular solution to a differential equation of the form
$a \frac{d^{2} x}{d t^{2}}+b \frac{d x}{d t}+c=f(t)$
we try functions of the same form as the forcing function $f(t)$.

| Forcing function $f(t)$ | Form of particular function to try $x_{p}(t)$ |
| :--- | :--- |
| constant | $x_{p}(t)=k$ |
| $k^{\prime} t+l^{\prime}$ | $x_{p}(t)=k+l$ |
| $k^{\prime} e^{\alpha^{\prime} t}$ | $x_{p}(t)=k e^{\alpha t}$ |
| $k^{\prime} \sin \theta^{\prime} t+l^{\prime} \cos \theta^{\prime} t$ | $x_{p}(t)=k \sin \theta t+l \cos \theta t$ |

## Example (2)

Solve $2 \frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}-3 x=3 e^{-\frac{1}{2} t}$.

## Solution

The homogeneous equation is
$2 \frac{d^{2} x}{d t^{2}}+5 \frac{d x}{d t}-3 x=0$
with auxiliary equation
$2 m^{2}+5 m-3=0$
$(2 m-1)(m+3)=0$
$m_{1}=\frac{1}{2}, \mathrm{~m}_{2}=-3$
$x_{c}(t)=A e^{\frac{1}{2} t}+B e^{-3 t}$

For the particular solution, we try
$x_{p}(t)=k e^{-\frac{1}{2} t}$
$\frac{d}{d t} x_{p}=-\frac{1}{2} k e^{-\frac{1}{2} t} \quad \frac{d^{2}}{d t^{2}} x_{p}=\frac{1}{4} k e^{-\frac{1}{2} t}$
On substituting into the original equation
$\frac{k}{2} e^{-\frac{1}{2} t}-\frac{5 k}{2} e^{-\frac{1}{2} t}-3 k e^{-\frac{1}{2} t}=3 e^{-\frac{1}{2} t}$
$\frac{k}{2}-\frac{5 k}{2}-3 k=3$
$-5 k=5$
$k=-\frac{3}{5}$
Therefore

$$
\begin{aligned}
x(t) & =x_{c}(t)+x_{p}(t) \\
& =A e^{\frac{1}{2} t}+B e^{-3 t}-\frac{3}{5} e^{-\frac{1}{2} t}
\end{aligned}
$$

## Example (3)

For the differential equation $\frac{d^{2} y}{d x^{2}}+9 y=8 e^{-x}$, find the solution for which $\frac{d y}{d x}=10$ and $y=2$ at $x=0$.

Solution
$\frac{d^{2} y}{d x^{2}}+9 y=8 e^{-x}$
The homogeneous equation is
$\frac{d^{2} y}{d x^{2}}+9 y=0$
With auxiliary quadratic equation
$m^{2}+9=0$
$m^{2}=-9$
$m_{1,2}=\sqrt{-9}= \pm 3 i$
The complementary function is
$y_{c}(x)=A \cos 3 x+B \sin 3 x$
where $A$ and $B$ are constants.
Let $y_{p}(x)=k e^{-x}$
$\frac{d}{d x} y_{p}(x)=-k e^{-x}$
$\frac{d^{2}}{d x^{2}} y_{p}(x)=k e^{-x}$
Substituting into the original equation
$k e^{-x}-9 k e^{-x}=8 e^{-x}$
$-8 k=8$
$k=-1$
$y_{p}(x)=-e^{-x}$
The general solution is
$y(x)=y_{c}(x)+y_{p}(x)=A \cos 3 x+B \sin 3 x-e^{-x}$
To find the coefficients $A$ and $B$ we use the boundary conditions. Firstly,
$y(0)=2 \Rightarrow A-1=2 \Rightarrow A=3$
On differentiating
$\frac{d y}{d x}=-3 A \sin 3 x+3 B \cos 3 x+e^{-x}$
$\frac{d y}{d x}=10 \Rightarrow 3 B+1=10 \Rightarrow B=3$
Hence the particular solution is
$y(x)=3 \cos 3 x+3 \sin 3 x-e^{-x}$
© blacksacademy.net

