Sequences and Series

Sequences

A sequence is any string of numbers in a given order. It is usual to denote successive members of the sequence by letters with numerical subscripts:
$u_{0}, u_{1}, u_{2}, u_{3}, \ldots, u_{n}, \ldots$
u_{n}, means the nth number in the sequence.
The numbering of the subscripts is a matter of convention.
That is, the first term could be designated by u_{1} or u_{2} etc.
Often sequences are generated by a rule, for example,
$u_{n}=n^{2}$
which gives the sequence:
$u_{0}=0, u_{1}=1, u_{2}=4, u_{3}=9, \ldots$
A finite sequence can also be generated by a recursion formula. This is a rule for computing the n +1 th term from previous terms. An example of this is the Fibonnacci sequence, given by the recursion formula:
$u_{n+1}=u_{n}+u_{n-1}$
When $u_{0}=1$ and $u_{1}=1$, this gives the sequence:
$u_{0}=1, u_{1}=1, u_{2}=2, u_{3}=3, u_{4}=5, u_{5}=8, u_{6}=13 \ldots$
A sequence can exhibit periodicity - meaning, it can repeat itself. A simple example is the alternating sequence:
$u_{n+1}=-u_{n}$
with $u_{0}=1$ this rule gives:
$u_{0}=1, \quad u_{1}=-1, \quad u_{2}=1, \quad u_{3}=-1, \ldots$
This has period $=2$. When the magnitude of the terms in a sequence gets larger and larger, the sequence is said to diverge, or be divergent. If the sequence tends towards a single value, then it is said to converge, or to be convergent.

Example (1)

Write down the first four terms and the nth term of the sequence whose r th term is:

$$
\frac{r}{2 r+1}
$$

© blacksacademy.net

Solution
$a_{r}=\frac{r}{2 r+1}$
$a_{1}=\frac{1}{2 \times 1+1}=\frac{1}{3}$
$a_{2}=\frac{2}{2 \times 2+1}=\frac{2}{5}$
$a_{4}=\frac{3}{2 \times 3+1}=\frac{3}{7}$
$a_{4}=\frac{4}{2 \times 4+1}=\frac{4}{9}$
The nth term is
$a_{n}=\frac{n}{2 n+1}$

Example (2)

For the sequence $u_{1}, u_{2}, u_{3}, \ldots, u_{n}, \ldots$ the terms are related by $u_{n}=3 u_{n-2}+4 u_{n-1}$ where $n \geq 1, u_{1}=1$ and $u_{2}=2$. Find the value of u_{3}, u_{4} and u_{5} State whether this sequence is convergent or divergent.
Solution

$$
\begin{aligned}
u_{n} & =3 u_{n-2}+4 u_{n-1} \\
u_{1} & =1 \\
u_{2} & =2 \\
u_{3} & =3 u_{1}+4 u_{2} \\
& =3 \times 1+4 \times 2=11 \\
u_{4} & =3 u_{2}+4 u_{3} \\
& =3 \times 2+4 \times 11=50 \\
u_{5} & =3 u_{3}+4 u_{4} \\
& =3 \times 11+4 \times 50=233
\end{aligned}
$$

Clearly the sequence is divergent.

Example (3)

The sequence $u_{1}, u_{2}, u_{3}, \ldots$ is defined by $u_{n}=4 n^{2}$.
(i) Write down the value of u_{5}.
(ii) Express $u_{n+1}-u_{n}$ in terms of n, simplifying your answer.
(iii) The differences between successive terms of the sequence form another sequence in which the successive terms differ from each other by a common difference. Find the first term of this sequence, and its common difference. Prove that the common difference of this sequence is constant.
Solution
(i) $\quad u_{5}=4 \times 5^{2}=4 \times 25=100$
(ii) $\quad u_{n+1}-u_{n}=4(n+1)^{2}-4 n^{2}$

$$
=4\left(n^{2}+2 n+1\right)-4 n^{2}
$$

$=4 n^{2}+8 n+4-4 n^{2}$
$=8 n+4$
$=4(2 n+1)$
(iii) Let $a_{n}=u_{n+1}-u_{n}=4(2 n+1)$

Then
$a_{1}=4(2+1)=12$
$a_{2}=4(4+1)=20$
$a_{3}=4(6+1)=28$
Thus the first term is
$a_{1}=12$
And the common difference is
$d=8$
To prove that the common difference is constant

$$
\begin{aligned}
a_{n}-a_{n-1} & =4(2 n+1)-4(2(n-1)+1) \\
& =8 n+4-4(2 n-2+1) \\
& =8 n+4-8 n+4 \\
& =8
\end{aligned}
$$

Series

Series are special types of sequences. They are formed from existing sequences by the addition of succeeding terms:

All series are sequences, but not all sequences are series.

To state the rule for the formation of a series we use the Σ notation.
Σ means "sum"
$\sum_{i=0}^{n} u_{i} \quad$ means "sum the squence whosefirst term is u_{0} and last term is $u_{n}{ }^{\prime \prime}$
that is:
$\sum_{i=0}^{n} u_{i}=u_{0}+u_{1}+u_{2}+\ldots+u_{n}$.
The u_{i} represents the i th term in the sequence
A series is generated by a rule of the form:
$a_{r}=\sum_{i=0}^{r} u_{i}$
This means:
$a_{0}=u_{0}$
$a_{1}=u_{0}+u_{1}$
$a_{2}=u_{0}+u_{1}+u_{2}$
\vdots
$a_{r}=u_{0}+u_{1}+u_{2}+\ldots+u_{r}$.

Example (4)

Write down the first 4 terms of the series $\sum_{r=1}^{n}(2 r+1)$
Solution

$$
\begin{aligned}
& a_{n}=\sum_{r=1}^{n}(2 r+1) \\
& a_{1}=(2 \times 1+1)=3 \\
& a_{2}=a_{1}+(2 \times 2+1)=3+5=8 \\
& a_{3}=a_{2}+(2 \times 3+1)=8+7=15 \\
& a_{4}=a_{3}+(2 \times 4+1)=15+9=24
\end{aligned}
$$

