Series Expansion

Functions can be multiplied together. Suppose two functions $f(x)$ and $g(x)$ each have a series expansion about a common point.

$$
\begin{aligned}
& f(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots . \\
& g(x)=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots
\end{aligned}
$$

Then the series expansion of the product of these two functions is found by multiplying the two series together. This has to be done systematically on a term by term basis.

$$
\begin{gathered}
f(x) \times g(x)=\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots . .\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\ldots . .\right) \\
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\ldots \ldots
\end{gathered}
$$

So we can find the series expansion of a product of functions by using our knowledge of algebra in a very intuitive way. This is best illustrated by example

Example

Express $f(x)=\frac{1-x}{1+2 x}$ as a series of ascending powers of x, as far as the term is x^{3}, giving the values x for which the series converges to $f(\mathrm{x})$.

Solution

$$
f(x)=\frac{1-x}{1+2 x}
$$

We begin by writing this as a product of two functions

$$
\frac{1-x}{1+2 x}=(1-x)(1+2 x)^{-1}
$$

The first of these functions does not require expansion. The second can be expanded by the binomial theorem with negative index. For

$$
(1+2 x)^{-1}=1+\frac{(-1)}{1!}(2 x)+\frac{(-1)(-2)}{2!}(2 x)^{2}+\frac{(-1)(-2)(-3)}{3!}(2 x)^{3}+\ldots
$$

Hence

$$
\begin{aligned}
\frac{1-x}{1+2 x} & =(1-x)(1+2 x)^{-1} \\
& =(1-x)\left(1-2 x+4 x^{2}-8 x^{3}+\ldots\right)
\end{aligned}
$$

Now we multiply out the pair of brackets on a term by term basis, but remembering that the second bracket contains an infinite number of terms.

Hence

$$
\begin{aligned}
\frac{1-x}{1+2 x} & =1-2 x+4 x^{2}-x+2 x^{2}-\ldots \\
& =1-2 x+4 x^{2}-8 x^{3}+\ldots \\
& =1-3 x+6 x^{2}-12 x^{3}+\ldots
\end{aligned}
$$

The series converges to $f(x)$ if $|2 x|<1$
That is
$|x|<1 / 2$

