
 
 

© blacksacademy.net 
 
1 

Simple Harmonic Motion  
 

 
Prerequisites 
 

You should already be familiar with elementary differential and integral calculus and the 

formation of a differential equation.  You should also be familiar with the concept of angular 

velocity, from your study of motion in a horizontal circle or otherwise.  Study the following 

example carefully. 

 

Example (1) 

(a) (i) Differentiate twice   sinx A t , where A is a constant.  Hence find 
2

2

d x

dt
 

and show that  sinx A t  is a solution to the differential equation 

 
2

2
2

d x
x

dt
. 

 (ii) Show also that     cos  A, constantx A t  is a solution to the 

differential equation  
2

2
2

d x
x

dt
. 

 (iii) What are the values of   sinx A t  and   cosx A t  when  0t ? 

 (iv) The motion of a particle is given by the equation 

    sinx A t  

  At time  0t  the particle is at the origin, and has velocity 16 ms .  Find 

A. 

 (v) The motion of a particle is given by the equation 

    cos 2x A t  

  If its acceleration at  0t  is  
2

2
2

2 ms
d x

dt
 find the value of A, and state 

also the displacement of the paticle when  0t . 

(b) A particle is moving in a straight line so that its acceleration  2 msa  towards a 

fixed point O is proportional to its distance   mx  from O and directed towards 

O.  When the particle is at O its displacement is 0 and its velocity is 16 ms .  

When it is 2 m from O its acceleration is  28 ms .  Form a differential equation 

and solve it to find the equation governing the motion of the particle. 
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Solution 

   

 

   

   

 



 

 





 





 



 

  

2
2

2

2
2

2

2
2

2

( ) sin

Differentiating this twice

cos

sin 1

On substituting sin  into 1

Hence sin  is a solution to the differential equation

a i x A t

dx
A t

dt
d x

A t
dt

x A t

d x
x

dt

d x
x A t x

dt

 

   

 

   

 



 

 

 



 

 

  

2
2

2

2
2

2

cos

sin

cos 1

Hence cos  is also a solution to 

ii x A t

dx
A t

dt
d x

A t
dt

d x
x A t x

dt

 

 

   
 

 
 







  



  

sin

When 0, sin 0 0

cos

When 0, cos 0

iii x A t

t x A

x A t

t x A A

 

 

   

 



 

 



sin 3

This particle starts at the origin, and its velocity is

3 cos 3

Hence, on substituting 6,  0

6 3

2

iv x A t

dx
v A t

dt
v t

A

A

 

 

   

 

 



  

  

  
  


2

2

cos 2

This particle starts at , and its velocity is

2 sin 2

Its acceleration is

4 cos 2

Hence, on substituting 2,  0

2 4

0.5

This gives the initial displacement of the particle

v x A t

A

dx
v A t

dt

d x
a A t

dt
a t

A

A




 at 0.  Hence,

initial displacement 0.5 m

t
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(b) The phrase, “a particle is moving in a straight line so that its acceleration 

 2 msa  towards a fixed point O is proportional to its distance   mx  from O 

and directed towards O” translates into the statement 

 
 
   constant

a x

a kx k
 

 To turn this into a differential equation we observe that acceleration is the 

second derivative of displacement, hence 

 
2

2

d x
a

dt
 and we have  

2

2
constant

d x
kx k

dt
 

 In this question we are given additional information about the acceleration and 

velocity of the particle at various times or positions.  We call such information 

boundary conditions or initial conditions.  The boundary conditions given in this 

question are 

 (i) At    
2

2
2, 8

d x
x a

dt
 

 (ii) At   0, 0 and 6t x v  

where x, a and v  stand for displacement, acceleration and velocity.  So, 

substituting the boundary condition,    
2

2
2, 8

d x
x a

dt
 

      8 2 4k k  

 Hence, we have the differential equation 

  
2

2
4

d x
x

dt
 

 In part (a) we saw that either   sinx A t  or   cosx A t  is a solution to the 

equation  
2

2
2

d x
x

dt
.  However, in the question we are given that the 

displacement of the particle at  0t  is  0A , so the equation that we should use 

is   sinx A t .  Its second derivative gives the acceleration of the particle as 

     
2

2
2

sin
d x

a A t
dt

 

By comparing this with  

    
2

2
4 4 sin

d x
x A t

dt
  

we see that   4 2 giving   sin 2x A t .  To find the constant A in this first 

observe that when  0t  then   sin 0 0x A ; hence we use the second boundary 

condition, that   0, 6
dx

t v
dt

.  That is 
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 

 

 





     



sin 2

2 cos 2

0, 6 6 2 3

Hence

3sin 2

x A t

dx
A t

dt
dx

t A A
dt

x t

 

 

The differential equation  
2

2
2

d x
x

dt
 is the equation of the simple harmonic oscillator, and its 

solution is a sine function, either   sinx A t  or   cosx A t .  Any particle whose motion is 

governed by these two equations is said to undergo simple harmonic motion. 

 

Which solution to choose? 

To solve the equation  
2

2
2

d x
x

dt
 you must choose one of the solutions 

  sinx A t  or   cosx A t . 

This choice depends on the boundary conditions given in the question.  If you are told that the 

displacement at time  0t  is  0x , then you choose the equation   sinx A t .  If you are told 

that the displacement at  0t  is x A , then you choose the equation   cosx A t . 

 

In fact, in addition to   sinx A t  or   cosx A t  as solutions to  
2

2
2

d x
x

dt
, any linear 

combination of these two is also a potential solution.  That is,      sin cosx A t B t  is also a 

solution to  
2

2
2

d x
x

dt
.  In this chapter we restrict our attention only to solutions of the form 

  sinx A t  or   cosx A t  and the given boundary conditions will require you to choose 

between them. 

 

Remark 

It is worth remarking that the solution to example (1) is based on techniques that you should 

already know.  Yet, using these techniques we have already been able to construct almost the 

entire background theory of simple harmonic motion, as we shall proceed to demonstrate in 

further detail. 
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Simple harmonic motion 
    
Simple harmonic motion 

Simple harmonic motion is defined as motion taking place along a straight-line in which the 

acceleration of the object is proportional to the displacement of the object from a fixed point and 

in the opposite direction to the displacement. 

 

For simple harmonic motion to occur there must be 

(1)  A mass that oscillates 

(2)  A central point of equilibrium about which the mass oscillates 

(3) A restoring force that pulls the mass towards the point of equilibrium.  The restoring 

force acts in a direction that is opposite to the displacement of the mass and is 

proportional to that displacement 

 

The differential equation governing simple harmonic motion is 





 

 

 

2
2

2

where  is the acceleration,  is the displacement, and  is the angular velocity. It has solution

sin  or cos

where  is the amplitude.

d x
x

dt

a x

x A t x A t

A



 

 

In the above we state that the term   in the differential equation  
2

2
2

d x
x

dt
 is called the angular 

velocity of the simple harmonic motion.  This will be explained in more detail below.   

 
Physical applications 

A mass attached to the end of a helical spring or elastic string will exhibit simple harmonic 

motion.  As the spring alternately contracts and expands the motion of the bob over time 

describes a sine wave. 

 

t

x
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If air resistance and other sources of loss of energy can be ignored then such a physical system 

would oscillate indefinitely.  In practice, friction and energy loses cannot always be ignored; 

nonetheless, examples of physical situations that exhibit behaviour that is either simple harmonic 

motion or akin to it include 

 

Vibrating strings of a violin 

Sound waves in a pipe 

Vibrations of machinery 

Alternating current in an electrical circuit 

Alternating currents in a television aerial 

Electromagnetic waves 

Vibrations of an atom 

Vibrations of crystal structures

 

 
Physical systems that exhibit harmonic motion are called simple harmonic oscillators. 
 
 
 
 

Oscillations 
  
In this subsection we aim to gain more insight into the nature of solutions to the differential 

equation of the harmonic oscillator 

 
2

2
2

d x
x

dt
  

We shall restrict our attention to the solution that takes the form  sinx A t .  The function 

 sinx A t  describes the motion of an oscillating mass.  It is an example of a waveform and has 

several properties. 

 

The displacement  x  is the distance of the mass from the fixed point O to which the restoring 

force is directed. 

The amplitude  A  is the maximum displacement. 

The period  T  is the time taken for the mass to complete one whole cycle of displacements in 

both directions from O. 

The frequency  f  is the number of cycles (periods) per unit of time; that is, the number of cycles 

per second. 

The oscillating mass has also the properties of velocity 
  
 

dx
v

dt
 and acceleration 

 
  

 

2

2

dv d x
a

dt dt
 

The frequency  f  and period  T  are not directly expressed in the equation 

 sinx A t  
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We shall relate both to the angular velocity   , which is another property of this waveform, that 

we shall define below.  Period and frequency are related to each other, as frequency is the 

reciprocal of period. 

 
1 1

frequency
period

f
T

 

The standard units of period are seconds; those of frequency are hertz (symbol, Hz).  I hertz is a 

frequency of 1 cycle per second. 

 

x / displacement

t / time

A  = amplitude

T = period  

 
 
 

Angular velocity 
 
You should have already met the concept of angular velocity in the context of a particle moving in 

a horizontal circle.  Let a particle P be moving at a constant speed 1 msv  in a horizontal circle.  

Let the origin of the motion be placed at the centre of the circle and let us also establish a set of 

coordinates for the horizontal plane in which the motion takes place. 

 

v

P

x

y
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Let the angle made by the particle and the x-axis be   radians.  As P moves around the circle the 

angle   increases.   Suppose at time  0 st  the angle is also   0  so that we fix the direction of 

the x-axis by this means.  Then clearly as t increases the angle   increases.  We call the angle 

swept out per unit of time angular velocity and denote this by  .   

 
change in angle

angular velocity = 
change in time t

 

We remind you that the units of angular velocity are radians per second, 1rad s .  We shall now 

see that we can relate this concept of angular velocity to the period and frequency of a harmonic 

oscillator.  The following diagram illustrates another object that describes simple harmonic 

motion. 

 

t

x  
 
The wheel is turning with a constant angular velocity.  A shaft is attached to the wheel at one end.  

At the other end of the shaft a ball is fixed.  As the wheel turns the ball is constrained to move 

within a groove.  The resultant oscillations of the ball in the groove describe a sine wave.  The 

period of one complete cycle corresponds to a single revolution of 2  radians.  If the frequency is 

f Hz then the period is 
1

f
 seconds.  So in 

1

f
 seconds the curve sweeps out 2  radians.  Hence, in 

1 second the curve sweeps out 2 f  radians.  But the angle swept out per unit time is the same as 

angular velocity   .  That is, the angular velocity of the oscillation is  12  radsf  where f is the 

frequency.  Thus 

  2 f  

Further, since 
1

 we also havef
T

 
 


 

2 2
and T

T
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x / displacement

t / time

A  = amplitude

T = 2  

Note in this graph that we have indicated that the period of the oscillation is 




2

 secondsT .  In 

all of the above angles are measured in radians.  This is standard for problems set on harmonic 

oscillators.  However, if angles are measured in degrees then the period is 



360

T .  So it is 

important to be clear as to whether angles are measured in degrees or radians. 

 
 
 
 

The physics of simple harmonic motion 
 
When a spring oscillates it does so about an equilibrium level.  

Equilibrium level

Maximum contraction

Maximum extension
 

There is a maximum contraction and a maximum extension.  In this physical interpretation of 

simple harmonic motion, we measure the displacement as the distance travelled by the mass 

downwards from the equilibrium level.  The amplitude is the maximum displacement in both a 

positive and negative direction. 
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x / displacement

A = Amplitude

 

 

When the spring is contracting and the mass lies above the equilibrium level, it has a negative 

displacement.  At the two points of maximum amplitude (maximum contraction and maximum 

extension), the weight has no velocity.  On the other hand, its acceleration is at a maximum, 

because it is just changing direction and the size of the restoring force is proportional to the 

displacement.  In this physical application at both points the spring is exerting the maximum 

force to “pull” the weight back up, or to “push” the weight back down towards the equilibrium 

level.  As the weight passes through the equilibrium level it has maximum velocity, but the spring 

is not exerting a force on the weight at all and its acceleration is, therefore, zero. 

 

acceleration = 0, velocity = max, displacement = 0

acceleration = max, directed downwards and positive
velocity = 0, displacement = max and negative

acceleration = max, directed upwards  and negative
velocity = 0, displacement = max and positive

x / displacement  

 

The diagram illustrates how the acceleration and velocity of the mass changes as it oscillates.  

Simple harmonic motion is defined by the linear relationship between acceleration and 

displacement.  We can now illustrate this graphically. 
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x / displacement

a =      / accelerationd x
dt

maximum
negative
displacement

maximum positive
acceleration

the relationship is linear

2

2

 

The displacement/time graph of an object in simple harmonic motion takes the form of a sine 

wave.  The velocity of an object in simple harmonic motion is its gradient.  Therefore, when 

displacement is at a maximum or minimum, the velocity is 0 – since the gradient of a maximum or 

minimum is 0.  When displacement is 0, the velocity is at a maximum.  Since       
 

cos sin
2

t t  

the velocity is 

2

 ahead of the displacement.  Acceleration is the gradient of the velocity/time 

graph.  Acceleration is proportional but in the opposite direction to the displacement.  When 

displacement has a maximum, acceleration is at a minimum, and vice-versa.  This gives the 

following graphs 

 

v t = cos 

t0

t0

x t= sin

t
0

Displacement

Velocity

Accelerationa t = sin 2
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Relationships in harmonic motion 
 

We can describe several relationships between the various variables and constants that we have 

defined. 

 

Relationship between velocity, angular frequency, displacement and amplitude 

 



 2 2 2 2

where  is the velocity,  is the angular frequency,  is the amplitude and  is the displacement.

v A x

v A x
 

 

Proof 

Let  sinx A t , then 

    cos
dx

v A t
dt

 

Hence 

 
 
 

 

 

 

 





 

 

 

2 2 2 2

2 2 2

2 2 2 2

2 2 2

cos

1 sin

sin

v A t

A t

A A t

A x

 

A similar proof would also apply to the form  cosx A t . 

 

Relationship between maximum velocity and angular frequency 

maxv A  

where  is the amplitude and  is the angular frequencyA  and maxv  denotes the magnitude of the 

maximum velocity max maxv v . 

 

Proof 

We have   2 2 2 2v A x .  At the maximum velocity  0x ; hence 









2 2 2
max

max

v A

v A
 

 

Maximum acceleration 

The magnitude of the maximum acceleration is given by 





 2

where  is the acceleration,  is the angular frequency and  is the amplitude.

a A

a A
 

 



 
 

© blacksacademy.net 
 

13 

Proof 

Let   sinx A t  and     
2

2
2

sin
d x

a A t
dt

.   

Hence, at the maximum acceleration 



    

2
0, 1, 2,...

n
t nT n  and 

   



   



2 2
max

2

sin 2a A n A

a A
 

 

Example (2) 

An object is oscillating under simple harmonic motion with amplitude 0.03 m and a 

frequency of 30 Hz.  Find  

(a)  The period of oscillation 

(b)  The maximum acceleration 

(c)  The maximum velocity. 

 

Solution 

 

 

   



 









  

    

 



   

1

2

2 2 2
max

0.03 m

30 Hz

1 1
( ) 0.033 s  2 s.f.

30

( ) 2 2 30 60  rads

 the magnitude of the maximum acceleration is given by

60 0.03 108 ms

The minimum acceleration occurs at the middle 

A

f

a T
f

b f

a x

a

        1
max

of the oscillation, and is zero

( ) 60 0.03 1.8 msc v A

 

 

Example (3) 

A particle P is moving in a straight line with simple harmonic motion about centre O, with 

frequency 
1

6
 Hz.  The maximum speed of P is  14  ms .  

(a) Find the amplitude of the motion. 

(b) At a point A the velocity of P is  12  ms .  Find the distance OA, expressing your 

answer in surd form. 

(c) Calculate the time taken by P to move directly from O to A. 

(d) Determine the magnitude of the maximum acceleration of P. 

(e) Find the distance travelled by the particle P during the first 30 s of its motion. 
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Solution 

(a) 
     

1
2 2

6 3
f  










max

4
3

12 m

v A

A

A

 

 

 

 

 



 





 

   

 

 

  

 

2 2 2 2

2
2 2

2

2

1

( )

2 , 12,
3

4 144
9

144 36

144 36 108

108 6 3 ms 3 s.f.

b v A x

v A

x

x

x

x

 

 (c) The equation governing the motion of P is 

  
   
 

12sin
3

x t  

We choose this equation because it places the position of the particle at  0t  at 

the origin, O,  0x .  Then, if the particle moves directly from O to A then we may 

substitute  6 3x  into this equation to obtain 





 

   
 

    
 





6 3 12sin
3

6 3 3
sin

3 12 2

3 3
1 s

t

t

t

t

 

          
 

2 2
2 24

( ) 12 13.2 ms 3 s.f.
3 3

d a A  

 (e) The period is 
 

  
1 1

6 s
1
6

T
f

 

Therefore in 30 s the particle makes  30 6 5 periods.  The distance travelled in 

any one period is 4 times the amplitude.  Therefore the distance travelled in 30 s 

is    5 4 12 240 md . 
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Summary 
 

  1

 is time

 is the displacement

 is the velocity

 is acceleration

 is frequency

 is period

 is the angular frequency rad s

 is the amplitude

t

x

v

a

f

T

A

 

 

Simple harmonic motion is defined as motion taking place along a straight-line in which the 

acceleration of the object is proportional to the displacement of the object from a fixed point and 

in the opposite direction to the displacement.  The differential equation governing simple 

harmonic motion is  
2

2
2

d x
x

dt
 with the following solution. 

 

 

 

 

 

   

   

 

   

    

     
2 2

2 2
2 2

sin cos

with boundary condition with boundary condition

0 at 0  at 0

Then Then

cos sin

sin cos

x A t x A t

x t x A t

dx dx
v A t v A t

dt dt

d x d x
a A t a A t

dt dt

 

 

The following relationships hold 


1

f
T

 

  
2

2 f
T

 





2

T  

  2 2 2 2v A x  

maxv A  

 2
maxa A  


