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Simple Harmonic Motion and Springs 
 
 

 
Prerequisites 
 

You should already be familiar with simple harmonic motion and with Hooke’s law for springs 

and elastic materials. 

 

Simple harmonic motion 



 is time  is frequency

 is the displacement  is period

 is the velocity  is the angular frequency

 is acceleration  is the amplitude

t f

x T

v

a A

 

 

Simple harmonic motion is defined as motion taking place along a straight-line in which the 

acceleration of the object is proportional to the displacement of the object from a fixed point and 

in the opposite direction to the displacement.  The differential equation governing simple 

harmonic motion is  
2

2
2

d x
x

dt
 with solution 

 sinx A t        cos
dx

v A t
dt

      
2

2
2

sin
d x

a A t
dt

 

The following relationships hold 


1

f
T

      2 2 2 2v A x  

  
2

2 f
T

   maxv A  


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
2

T      2
maxa A  

 

 

 

Springs are harmonic oscillators 
 
We will now show that a spring or elastic string suspended vertically, with a mass attached at the 

lower end and the higher end attached to a fixed point is a harmonic oscillator.  We firstly 
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consider a spring hanging in equilibrium (that is, not moving) under the weight of the mass 

attached to it. 

 

W

T

, l0

 

 

The spring has natural length 0l  and modulus of elasticity  .  Its stiffness (or spring constant) k 

is given by 



0

k
l

.   There are two forces acting on the mass.  These are the tension produced by 

the spring, and its weight.  The spring is not oscillating, so these two forces are equal, T W .  

The tension is produced by the extension of the spring beyond its natural length.  Let this 

extension be d.   Then, by Hooke’s law T kd  where k is the stiffness of the spring.  Hence, since 

T W  we have  

kd mg  

This equation will be used below as we proceed to show that once the mass is disturbed from its 

equilibrium position it will undergo simple harmonic motion.  So now imagine that the mass is 

pulled down below the equilibrium point, thus increasing the tension above the weight.  This 

means that if the mass is released it will be pulled upwards by the resultant force.  We claim that 

the mass will start to oscillate.  Let the extension beyond the equilibrium level be x. 

 

W

T

, l0

R

x

Equilibrium level

 

 

The resultant force acts upwards initially – that is, in the opposite direction to the direction of the 

displacement.   
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Here we assume that there is no air resistance, so the magnitude of this resultant force is 

 R T W  

The total extension of the spring is  y x d , where d is, as before, the extension up to the 

equilibrium point, and x is the additional extension.   Since W mg , we have 

   R k x d mg  

But this is the magnitude of the resultant force, and not its direction.  As already indicated the 

resultant acts in the opposite direction to the displacement, so to represent the direction we 

introduce a negative sign 

     R k d x mg  

   R kd kx mg  

But we showed earlier that mg kd .  Hence 

   
 

R kd kx kd

R kx
 

R is the resultant force acting on the mass and obeys Newton’s second law, F ma .  Hence 

 ma kx  

where 
2

2

d x
a

dx
 is the acceleration of the mass.  Hence 

    
 

2

2

d x k
x

dt m
 

This conforms to the definition of a simple harmonic oscillator (see introductory section).  Hence, 

a mass attached to a spring, or light elastic string, is a simple harmonic oscillator.  The angular 

frequency of the oscillation is 

  
0

k

m ml
 

where  0 is Young's modulus for the spring, and  is its natural length.l  

 

Example (1) 

(a) A particle of mass 2 kg is attached to one end of a light elastic string AB of 

natural length 1 m, where A is fixed and B is the point of attachment between the 

particle and the string.  The string is extended by a length of 0.24 m and the mass 

is in static equilibrium.  Determine the modulus of elasticity, giving your answer 

as a fraction. 

(b) The particle is pulled down a further 0.3 m after which it is released from rest at 

time  0t .  Show that its subsequent motion is harmonic.  Find the time after 

which the particle passes through the equilibrium position for the first time and 

its speed when it does so. 
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Solution 

 (a) 

 W

T

, l  = 1 m0

2 kg

 

 

At equilibrium T W .  The tension is given by T kd  where k is the spring 

constant and d is the extension.  The spring constant is given by 



0

k
l

 where  is 

the modulus of elasticity and 0l  is the natural length.  On substitution into T W  

we obtain 











   

  


 

0

2
0Here 0.24 m,  1.0 m, 2  and 9.8 ms .  Hence

0.14 2 9.8
1

2 9.8 245
 N

0.24 3

d mg
l

d l m kg g
 

(b) 

, l  = 1 m0

2 kg

W

T
R

x

Equilibrium level

 

 

Let x represent the extension of the particle beyond the equilibrium level.  The 

two forces acting on the particle continue to be the weight  W mg  and the 

tension  T ky  where y is the total extension – that is, the extension up to the 
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equilibrium point  0.24 m  followed by the extension x beyond the equilibrium 

point.  Since the particle is extended beyond the equilibrium point it experiences 

a resultant force pulling it upwards. 

 R W T  

 

 

 

  

  



 

 
2

2

But 0.24.  Hence

0.24

0.24

But from the first part of the question 0.24 .  Hence,

The resultant force obeys Newton's second law, hence

which is the equation o

R mg ky

y x

R mg k x

R mg kx k

mg k

R kx

d x
m kx

dt

 
245

f simple harmonic motion.  Here ,  2 giving
3

k m

 

 

 

2

2

2

2

245
2

3

245

6

d x
x

dt

d x
x

dt

 

Since the particle is released from a position 0.3 m below the equilibrium position 

the amplitude at  0t  is  0.3A  and the solution to the equation 

   
2

2
2

 is 0.3cos
d x

x x t
dt

 where A is the amplitude.  Hence  

   
       

   

245 5
0.3cos 0.3cos 7

6 6
x t t  

The particle returns to the equilibrium position when  0x .  To find the time 

when this happens, the period is 
 


 
 
  
 

2 2

245
6

T . The time after which the 

particle passes through the equilibrium position for the first time is 
1

4
 the 

period:  
  

 
  
 

1 0.2458... 0.256 s   3 s.f.
245

2
6

t . The maximum speed of the 

particle when it passes through the equilibrium position is given by 

       1
max

245
0.3 1.9170... 1.92 ms    3 s.f.

6
v A  
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Energy in simple harmonic motion 
 

Let us take an oscillating mass   kgm  attached to a light spring as an example of simple 

harmonic motion.   With x as the extension of the spring beyond the equilibrium point and v as 

the mass’s velocity, this mass will have three kinds of energy. 

 

(1) Elastic potential energy given by 

  
2

0
0

, spring constant   , Young's modulus ,  natural length
2

kx
E k l

l
 

(2) Gravitational potential energy, given by  

  is the height of the mass above a reference levelU mgh h  

(3) Kinetic energy, given by 

 21

2kE mv  

As the object oscillates, these forms of energy will be inter-converted.  Let us assume that this is a 

closed system, so that total energy within it is conserved and there are no energy losses from it; in 

particular, we assume that there is no friction to dampen the motion of the mass.  Hence 

     
     
     

2 2

gravitational kinetic elastic potential
total energy = + +

potential energy energy energy

1 1
= +

2 2
E mgh mv kx

 

Suppose we set the reference point for the determination of the gravitational potential energy in 

U mgh  to be the level when the particle is at its lowest point, then at this point the particle will 

have 0 gravitational potential energy, 0 kinetic energy and maximum elastic potential energy.  As 

the particle accelerates towards the equilibrium level, it will lose elastic potential energy, which 

will be converted to gravitational and kinetic energy.  When it passes the point where there is no 

extension or compression of the spring, the elastic potential energy will be 0, and the object will 

have both gravitational potential energy and kinetic energy.  The kinetic energy is converted to 

elastic potential energy, as the spring is compressed and to gravitational potential energy, as the 

object rises to its maximum height.  These energy conversions are reversed while the object is 

moving downwards. 

 

Energy conversions can be used to solve certain problems concerning harmonic oscillators. 

 

Example (1) continued 

 (c) With the system as defined in example (1), by use of energy considerations, 

determine how high above the point of release the particle reaches during the 

period of harmonic motion. 
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Solution 

(c) Let h be the maximum height above the equilibrium point that the particle 

reaches.   The particle’s elastic potential energy is 




2

0

Elastic potential energy
2

x

l
 

where x is the extension.  At the equilibrium point  0.24 mx .  We saw in part (b) 

of the question that  1
max 1.9170... msv .  This is the velocity of the particle has it 

passes through the equilibrium point.  Its kinetic energy at this point will be 

    
221 1

2 1.9170...
2 2EK mv  

As the particle passes the equilibrium point it gains gravitational potential 

energy, but loses kinetic energy and elastic potential energy. 


 

2
2

0

Gain of gravitational potential = loss in elastic potential + loss in kinetic energy

1

2 2

x
mgh mv

l

 

Therefore, on substituting    0

245
2, 9.8,  and 1

3
m g l  

 
 

 

   
      





  

2

2

245
0.24

1 3
2 9.81 2 1.9170...

2 2

19.6 6.027

0.3075 m

The height above release is 0.3 0.3075 0.6075 0.608 m 3 s.f.

h

h

h

 


