## Sine and cosine rules

## Pythagoras's theorem

You should already be familiar with Pythagoras's theorem, which states that in a right-angled triangle, the square on the hypotenuse is equal to the sum of the squares of the other two sides.


$$
r^{2}=x^{2}+y^{2}
$$

## Example (1)

Find the length $A$, in the following triangle, giving your answer in surd form.


Solution

$$
\begin{aligned}
& 16^{2}=a^{2}+9^{2} \\
& a=\sqrt{16^{2}-9^{2}}=\sqrt{175}=5 \sqrt{7}
\end{aligned}
$$

We want to generalise Pythagoras's Theorem to include any triangle.


Although this is not a right-angled triangle, we would still like to be able to find an unknown length or angle. The diagram suggests that if the angle $A$ is known then we can find the length $a$, or vice-versa, if the length $a$ is known then we can find the angle $A$.

## The cosine formula

The cosine formula is a generalised form of Pythagoras's Theorem to deal with triangles where there is no right angle. In the following diagram the angles are labelled $A, B, C$ and sides opposite those angles are labelled $a, b, c$ respectively.


Using these labels the cosine formula is
$a^{2}=b^{2}+c^{2}-2 b c \cos A$

## Example (2)

In the following triangle, find $a$.


Solution
In the cosine formula, $a^{2}=b^{2}+c^{2}-2 b c \cos A$, the symbol $A$ stands for the included angle and the symbols $b$ and $c$ stand for the sides enclosing the angle $A$. The unknown side is opposite $A$ and is labelled $a$.


Substituting $b=7, c=11$ and $A=32^{\circ}$ into $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\begin{aligned}
a^{2} & =7^{2}+11^{2}-2 \times 7 \times 11 \times \cos 32 \\
& =49+121-154 \times 0.848 \ldots \\
& =39.400 \ldots \\
a & =\sqrt{39.400}=6.2769 \ldots=6.28 \quad \text { (3.s.f. })
\end{aligned}
$$

If we know three sides in a triangle we can find any one of the unknown angles.

## Example (3)



In the diagram above, find the angle $A$.

Solution
In the cosine formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$ if $A$ is the included angle, $b$ and $c$ are the sides that enclose it.


Substituting into $a^{2}=b^{2}+c^{2}-2 b c \cos A$ gives

$$
\begin{aligned}
& 6^{2}=13^{2}+7.5^{2}-2 \times 13 \times 7.5 \times \cos A \\
& 2 \times 13 \times 7.5 \times \cos A=13^{2}+7.5^{2}-6^{2} \\
& 195 \cos A=189.25 \\
& A=\cos ^{-1}\left(\frac{189.25}{195}\right)=13.948 \ldots=13.9^{\circ}\left(0.1^{\circ}\right)
\end{aligned}
$$

In the formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$ the labels $a, b, c$ and $A$ are relative - they move around depending on what you are trying to find. For example, suppose in the same triangle we are asked to find the angle between the sides of length 6 and 7.5 , then we would label it as follows.


The positions of $b$ and $c$ can be swapped; they stand for the two sides that enclose the angle in question in any order.

## Example (4)

Find the angle $A$ in the diagram above.

Solution
Substituting into $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\begin{aligned}
& 13^{2}=6^{2}+7.5^{2}-2 \times 6 \times 7.5 \times \cos A \\
& \cos A=\frac{6^{2}+7.5^{2}-13^{2}}{2 \times 6 \times 7.5}=-0.8577 \ldots \\
& A=\cos ^{-1}(-0.8577)=148.515 \ldots=148.5^{\circ} \quad\left(0.1^{\circ}\right)
\end{aligned}
$$

The formula still works despite the negative value of $\cos A$ because the calculator finds a value for the inverse of cosine, $\cos ^{-1}$, that lies between 0 and $180^{\circ}$.

## The sine rule

Later we shall prove the cosine formula. Before we do so we shall introduce another formula used in triangles. This is the sine rule. As before, we label the triangle thus


The sine rule is
$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$

## Example (5)



The diagram shows four points in a plane with lengths and angles as marked.
(a) Find the angle $A \hat{B} C$ to $0.1^{\circ}$.
(b) Find the distance $C D$ to two significant figures.

Solution
(a)


On substituting into the sine rule $\frac{a}{\sin A}=\frac{b}{\sin B}$

$$
\frac{\sin B}{3}=\frac{\sin 25}{5}
$$

$$
\sin B=\frac{3}{5} \sin 25
$$

$$
A \hat{B} C=B=\sin ^{-1}(0.2535 \ldots)=14.7^{\circ}\left(\text { to } 0.1^{\circ}\right)
$$

Since $B=14.7^{\circ}$ we can fill in some of the missing angles in the diagram.


The triangle in question is $B C D$ and on substituting $A=100.6^{\circ}, b=c=5$ into the cosine formula $a^{2}=b^{2}+c^{2}-2 b c \cos A$

$$
\begin{aligned}
& C D^{2}=5^{2}+5^{2}-2 \times 5 \times 5 \times \cos 100.6=59.19756 \ldots \\
& C D=7.6939 \ldots=7.7(2 . . \text { s.f. })
\end{aligned}
$$

## Area of a triangle

There is a third formula of importance, this is a formula for the area of a triangle, $\Delta$, given by
$\Delta=\frac{1}{2} a b \sin C$
where $C$ is the angle enclosed by the sides $a$ and $b$.

## Example (6)

Find the area of this triangle


Solution
Substituting into $\Delta=\frac{1}{2} a b \sin C$
$\Delta=\frac{1}{2} 7 \times 8 \times \sin 72.1=26.6446 \ldots=26.6$ sq. units (3.s.f.)

## Proofs

(1) Proof of the cosine formula

Consider the triangle $A B C$


Drop a perpendicular from $C$ to $A B$ as follows.


In the $\triangle A X C$ from Pythagoras's theorem
$y^{2}=b^{2}-x^{2}$
In the $\triangle C X B$ also from Pythagoras's theorem

$$
y^{2}=a^{2}-(c-x)^{2}
$$

Hence, eliminating $y$ from these two equations gives]
$b^{2}-x^{2}=a^{2}-(c-x)^{2}$
$b^{2}-x^{2}=a^{2}-\left(c^{2}-2 c x+x^{2}\right)$
$b^{2}-x^{2}=a^{2}-c^{2}+2 c x-x^{2}$
Rearranging gives
$a^{2}=b^{2}+c^{2}-2 c x$
In the $\triangle A X C$
$x=b \cos A$
Hence
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
(2) Proof of the sine formula

Consider the triangle $A B C$, with a perpendicular from $C$ to $A B$ as follows


In the $\triangle A C X$
$y=b \sin A$
In the $\triangle C X B$
$y=a \sin B$
Eliminating $y$ from both equations gives
$b \sin A=a \sin B$
or
$\frac{\sin A}{a}=\frac{\sin B}{b}$
The argument could be repeated for any two pairs of angles, hence]
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
(3) Area of a triangle

Consider the triangle $A B C$, with perpendicular from $A$ to $C B$ as follows


The area of the triangle is given by
$\Delta=\frac{1}{2}$ base $\times$ height $=\frac{1}{2} a \times y$
But
$y=b \sin C$
Hence
$\Delta=\frac{1}{2} a b \sin C$

