Sinusoidal functions

Prerequisites

You should be familiar with the following compound-angle formulae

- (1) $\sin(A+B) \equiv \sin A \cos B + \cos A \sin B$
- (2) $\sin(A B) \equiv \sin A \cos B \cos A \sin B$
- (3) $\cos(A+B) \equiv \cos A \cos B \sin A \sin B$
- (4) $\cos(A B) = \cos A \cos B + \sin A \sin B$

Example (1)

By substitution into one of the compound-angle formulae prove

(a) $\sin \theta = \cos\left(\theta - \frac{\pi}{2}\right)$ (b) $\cos \theta = \sin\left(\theta + \frac{\pi}{2}\right)$

Solution

solution
(a) To prove

$$\sin \theta = \cos\left(\theta - \frac{\pi}{2}\right)$$

The appropriate compound-angle formula is
 $\cos(A - B) = \cos A \cos B + \sin A \sin B$
Substituting $A = \theta$ and $B = \frac{\pi}{2}$
 $\cos\left(\theta - \frac{\pi}{2}\right) = \cos \theta \cos \frac{\pi}{2} + \sin \theta \sin \frac{\pi}{2}$
 $\equiv \sin \theta \qquad \left[\operatorname{since} \ \cos \frac{\pi}{2} = 0 \ \text{and} \ \sin \frac{\pi}{2} = 1 \right]$
(b) $\sin(A + B) \equiv \sin A \cos B + \cos A \sin B$
Let $A = \theta$ and $B = \frac{\pi}{2}$

$$\sin\left(\theta + \frac{\pi}{2}\right) \equiv \sin\theta\cos\frac{\pi}{2} + \cos\theta\sin\frac{\pi}{2} \equiv \cos\theta$$

What this first example shows is that $\sin \theta$ can be written in terms of $\cos \theta$ and vice-versa. This can be illustrated from a graph superimposing $\sin \theta$ on $\cos \theta$.

So $\cos\theta$ arises from $\sin\theta$ by a translation along the θ -axis by $-\frac{\pi}{2}$, and $\cos\theta = \sin\left(\theta + \frac{\pi}{2}\right)$. Also $\sin\theta$ arises from $\cos\theta$ by a translation along the θ -axis by $+\frac{\pi}{2}$, and $\sin\theta = \cos\left(\theta - \frac{\pi}{2}\right)$. In these cases the angle $\frac{\pi}{2}$ is called the *phase shift* – that is, $\cos\theta$ is the phase shift by $-\frac{\pi}{2}$ of $\sin\theta$; $\sin\theta$ is the phase shift by $+\frac{\pi}{2}$ of $\cos\theta$.

Sinusoidal functions

Sinusoidal functions are linear combinations of sine and cosine functions of the same variable and with the same period. In other words they are functions of the form

$$f(\theta) = a\cos\theta - b\sin\theta$$

where *a* and *b* are real numbers. Sinusoidal functions are equivalent to a single sine or cosine function shifted along the θ -axis by phase shift α . It is consequently possible to combine $f(\theta) = a\cos\theta - b\sin\theta$ into a single function either of the form $f(\theta) = R\cos(\theta + \alpha)$ or of the form $f(\theta) = R\sin(\theta + \alpha')$ where α and α' are the appropriate phase shift of the cosine and sine functions respectively and *R* is the *amplitude* of $f(\theta)$. Suppose we are given $f(\theta) = a\cos\theta - b\sin\theta$. Then let $a\cos\theta - b\sin\theta = R\cos(\theta + \alpha)$

where *R* and α are real numbers. By the compound angle formula

 $R\cos(\theta + \alpha) \equiv R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$

Hence

 $a\cos\theta - b\sin\theta = R\cos\theta\cos\alpha - R\sin\theta\sin\alpha$

Since this is an identity the left-hand side is equivalent to the right-hand side for all values of θ . Substituting $\theta = 0 \implies \sin \theta = 0$, $\cos \theta = 1$

gives $a = R \cos \alpha$. Substituting $\theta = \frac{\pi}{2} \implies \sin \theta = 1, \cos \theta = 0$

gives $b = R \sin \alpha$. From this it follows that

$$R = \sqrt{a^2 + b^2}$$
 $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$

Alternatively, writing

 $a\cos\theta - b\sin\theta = R\sin\left(\theta + \alpha'\right)$

and substituting

 $a\cos\theta - b\sin\theta \equiv R\sin(\theta + \alpha') = R\sin\theta\cos\alpha' + R\cos\theta\sin\alpha'$

$$R\cos\alpha' = -b$$
 $R\sin\alpha' = a$

 $R = \sqrt{a^2 + b^2} \qquad \tan \alpha' = -\frac{a}{b}$

A small problem and its resolution

The appropriate technique here is given $f(\theta) = a \sin \theta + b \cos \theta$ to find *R* and α such that

$$f(\theta) = R\cos(\theta + \alpha).$$

This requires solution of $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$. However, the function $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$ is periodic and has two solutions in the domain 0 to 2π .

Let us denote the two solutions of $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$ in the domain $0^{\circ} \le \alpha \le 360^{\circ}$ by α_1 and α_2 . The calculator will find a value of $\alpha = \tan^{-1}\left(\frac{b}{a}\right)$ that lies in the principle domain $-90^{\circ} \le \alpha \le 90^{\circ}$, so this solution may not even lie in the domain $0^{\circ} \le \alpha \le 360^{\circ}$. As only one of α_1 and α_2 is the correct phase shift of $f(\theta) = a\sin\theta + b\cos\theta$, we require a further technique to determine the right choice of phase shift. This difficulty can be circumvented if we draw a diagram showing the signs of a and b and deduce from it the correct phase angle.

Worked example (2)

We are asked to write $6\cos x - 3\sin x$ as a single sinusoidal function of the form $R\sin(\theta + \alpha)$. Then we begin by writing

 $6\cos x - 3\sin x = R\sin(x + \alpha)$ $= R\sin x \cos \alpha + R\cos x \sin \alpha$

Hence

$$R \sin \alpha = 6$$

$$R \cos \alpha = -3$$

$$R = \sqrt{6^2 + 3^2} = \sqrt{45} = 3\sqrt{5}$$

$$\alpha = \tan^{-1} \left(\frac{6}{-3}\right) = -63.4^\circ \pm 180^\circ n \qquad n = 0, \pm 1, \pm 2.$$

At this point a diagram is sketched to determine the correct phase shift.

The diagram shows how the value of $x = R \cos \alpha$ and $y = R \cos \alpha$ varies with changes in the phase shift α .

Both 116.6° and $-63.4^\circ = 296.6^\circ$ have $\tan\left(-\frac{6}{3}\right)$. However, in this question the correct

phase shift must give

 $R \sin \alpha = 6$ $R \cos \alpha = -3$ so the correct value of α is 116.6°. Thus $6 \cos x - 3 \sin x = 3\sqrt{5} \sin (x + 116.6^{\circ}) \qquad (\text{nearest } 0.1^{\circ}).$

Example (3)

Find all the values of θ in the range $0^{\circ} \le \theta \le 360^{\circ}$ satisfying

 $\cos\theta - 3\sin\theta = \sqrt{5}$

giving your answer in degrees correct to one decimal place.

```
Solution

Let

\cos \theta - 3\sin \theta = R\cos(\theta + \alpha) = R\cos\theta\cos\alpha - R\sin\theta\sin\alpha

Hence

R\cos\alpha = 1

R\sin\alpha = -3

R = \sqrt{1^2 + (-3)^2} = \sqrt{10}

\alpha = \tan^{-1}\left(\frac{-3}{1}\right)
```

$$y = R \sin \alpha$$

$$R \cos \alpha = 1$$

$$R = R \cos \alpha$$

$$R = -3$$

From the diagram

$$\alpha = \tan^{-1}\left(\frac{-3}{1}\right) = -71.6^{\circ} \pm n180^{\circ}$$
 $n = 1, 2, 3, ...$

Thus $\cos\theta - 3\sin\theta = \sqrt{5}$ implies

$$\sqrt{10} \cos(\theta - 71.6^{\circ}) = \sqrt{5}$$

$$\cos(\theta - 71.6^{\circ}) = \frac{1}{\sqrt{2}}$$

$$\theta - 71.6^{\circ} = \dots - 45^{\circ}, 45^{\circ}, 315^{\circ}, \dots$$

$$\theta = 26.6^{\circ}, 116.6^{\circ} \text{ where } 0^{\circ} \le \theta \le 360^{\circ} \text{ (nearest 0.1^{\circ})}$$

Relationship between a function and its reciprocal

Let y = f(x), then the reciprocal of this function is $\frac{1}{y} = \frac{1}{f(x)}$. Suppose further that the function y = f(x) is always positive, f(x) > 0 for all values of x. Then $f(x) \neq 0$ for any x and the reciprocal $\frac{1}{y} = \frac{1}{f(x)}$ is defined for all values of x in the domain of f(x). Then clearly as y = f(x) gets larger and larger then $\frac{1}{y} = \frac{1}{f(x)}$ gets smaller and smaller, and vice-versa. So a maximum of y = f(x) corresponds to a minimum of $\frac{1}{y} = \frac{1}{f(x)}$, and a minimum of y = f(x) corresponds to a maximum of $\frac{1}{y} = \frac{1}{f(x)}$.

Example (4)

- (*a*) Express $12\cos x 5\sin x$ in the form $R\cos(x + \alpha)$ were *R* and α are constants with R > 0 and $0^{\circ} < \alpha < 90^{\circ}$.
- (*b*) Hence find the greatest value of

$$\frac{1}{12\cos x - 5\sin x + 20}$$

Solution

(a) $12\cos x - 5\sin x = R\cos(x + \alpha) = R\cos x \cos \alpha - R\sin x \sin \alpha$ Hence $R\cos \alpha = 12$ $R\sin \alpha = 5$ $R = \sqrt{12^2 + 5^2} = 13$ $\alpha = \tan^{-1}\left(\frac{5}{12}\right) = 22.6^{\circ} \text{ (nearest 0.1°)}$

Note in this solution because both

 $R\cos\alpha = 12$

 $R\sin\alpha = 5$

are positive magnitudes the phase angle must lie in the first quadrant. The question also specified $0^\circ < \alpha < 90^\circ$. Then

 $12\cos x - 5\sin x = 13\cos(x + 22.6^{\circ})$

(*b*) The minimum value of

 $f(x) = 12\cos x - 5\sin x = 13\cos(x + 22.6^{\circ})$

is -13 when $\cos(x + 22.6^{\circ}) = -1$ [that is when $x = 202.6^{\circ} + n360^{\circ}$].

Then $f(x) + 20 = 12\cos x - 5\sin x + 20$ has minimum value 20 - 13 = 7. So the

greatest value of $\frac{1}{12\cos x - 5\sin x + 20}$ is $\frac{1}{7}$.

