## Sinusoidal functions

## Prerequisites

You should be familiar with the following compound-angle formulae
(2) $\sin (A-B) \equiv \sin A \cos B-\cos A \sin B$
(3) $\cos (A+B) \equiv \cos A \cos B-\sin A \sin B$
(4) $\cos (A-B) \equiv \cos A \cos B+\sin A \sin B$

## Example (1)

By substitution into one of the compound-angle formulae prove
(a) $\sin \theta \equiv \cos \left(\theta-\frac{\pi}{2}\right)$
(b) $\cos \theta \equiv \sin \left(\theta+\frac{\pi}{2}\right)$

Solution
(a) To prove
$\sin \theta \equiv \cos \left(\theta-\frac{\pi}{2}\right)$
The appropriate compound-angle formula is
$\cos (A-B) \equiv \cos A \cos B+\sin A \sin B$
Substituting $A=\theta$ and $B=\frac{\pi}{2}$

$$
\begin{aligned}
\cos \left(\theta-\frac{\pi}{2}\right) & \equiv \cos \theta \cos \frac{\pi}{2}+\sin \theta \sin \frac{\pi}{2} \\
& \equiv \sin \theta \quad\left[\text { since } \cos \frac{\pi}{2}=0 \text { and } \sin \frac{\pi}{2}=1\right]
\end{aligned}
$$

(b) $\sin (A+B) \equiv \sin A \cos B+\cos A \sin B$

$$
\text { Let } A=\theta \text { and } B=\frac{\pi}{2}
$$

$$
\sin \left(\theta+\frac{\pi}{2}\right) \equiv \sin \theta \cos \frac{\pi}{2}+\cos \theta \sin \frac{\pi}{2} \equiv \cos \theta
$$

What this first example shows is that $\sin \theta$ can be written in terms of $\cos \theta$ and vice-versa. This can be illustrated from a graph superimposing $\sin \theta$ on $\cos \theta$.


So $\cos \theta$ arises from $\sin \theta$ by a translation along the $\theta$-axis by $-\frac{\pi}{2}$, and $\cos \theta \equiv \sin \left(\theta+\frac{\pi}{2}\right)$. Also $\sin \theta$ arises from $\cos \theta$ by a translation along the $\theta$-axis by $+\frac{\pi}{2}$, and $\sin \theta \equiv \cos \left(\theta-\frac{\pi}{2}\right)$. In these cases the angle $\frac{\pi}{2}$ is called the phase shift - that is, $\cos \theta$ is the phase shift by $-\frac{\pi}{2}$ of $\sin \theta ; \sin \theta$ is the phase shift by $+\frac{\pi}{2}$ of $\cos \theta$.

## Sinusoidal functions

Sinusoidal functions are linear combinations of sine and cosine functions of the same variable and with the same period. In other words they are functions of the form

$$
f(\theta)=a \cos \theta-b \sin \theta
$$

where $a$ and $b$ are real numbers. Sinusoidal functions are equivalent to a single sine or cosine function shifted along the $\theta$-axis by phase shift $\alpha$. It is consequently possible to combine $f(\theta)=a \cos \theta-b \sin \theta$ into a single function either of the form $f(\theta)=R \cos (\theta+\alpha)$ or of the form $f(\theta)=R \sin \left(\theta+\alpha^{\prime}\right)$ where $\alpha$ and $\alpha^{\prime}$ are the appropriate phase shift of the cosine and sine functions respectively and $R$ is the amplitude of $f(\theta)$. Suppose we are given $f(\theta)=a \cos \theta-b \sin \theta$. Then let
$a \cos \theta-b \sin \theta \equiv R \cos (\theta+\alpha)$
where $R$ and $\alpha$ are real numbers. By the compound angle formula
© blacksacademy.net
$R \cos (\theta+\alpha) \equiv R \cos \theta \cos \alpha-R \sin \theta \sin \alpha$
Hence
$a \cos \theta-b \sin \theta \equiv R \cos \theta \cos \alpha-R \sin \theta \sin \alpha$
Since this is an identity the left-hand side is equivalent to the right-hand side for all values of $\theta$.
Substituting $\quad \theta=0 \Rightarrow \sin \theta=0, \cos \theta=1$
gives $a=R \cos \alpha$. Substituting $\quad \theta=\frac{\pi}{2} \quad \Rightarrow \quad \sin \theta=1, \cos \theta=0$
gives $b=R \sin \alpha$. From this it follows that
$R=\sqrt{a^{2}+b^{2}} \quad \alpha=\tan ^{-1}\left(\frac{b}{a}\right)$
Alternatively, writing

$$
a \cos \theta-b \sin \theta \equiv R \sin \left(\theta+\alpha^{\prime}\right)
$$

and substituting

$$
\begin{array}{ll}
a \cos \theta-b \sin \theta \equiv R \sin \left(\theta+\alpha^{\prime}\right)=R \sin \theta \cos \alpha^{\prime}+R \cos \theta \sin \alpha^{\prime} \\
R \cos \alpha^{\prime}=-b & R \sin \alpha^{\prime}=a \\
R=\sqrt{a^{2}+b^{2}} & \tan \alpha^{\prime}=-\frac{a}{b}
\end{array}
$$

## A small problem and its resolution

The appropriate technique here is given $f(\theta)=a \sin \theta+b \cos \theta$ to find $R$ and $\alpha$ such that $f(\theta)=R \cos (\theta+\alpha)$.

This requires solution of $\alpha=\tan ^{-1}\left(\frac{b}{a}\right)$. However, the function $\alpha=\tan ^{-1}\left(\frac{b}{a}\right)$ is periodic and has two solutions in the domain 0 to $2 \pi$.


Let us denote the two solutions of $\alpha=\tan ^{-1}\left(\frac{b}{a}\right)$ in the domain $0^{\circ} \leq \alpha \leq 360^{\circ}$ by $\alpha_{1}$ and $\alpha_{2}$. The calculator will find a value of $\alpha=\tan ^{-1}\left(\frac{b}{a}\right)$ that lies in the principle domain $-90^{\circ} \leq \alpha \leq 90^{\circ}$, so this solution may not even lie in the domain $0^{\circ} \leq \alpha \leq 360^{\circ}$. As only one of $\alpha_{1}$ and $\alpha_{2}$ is the correct phase shift of $f(\theta)=a \sin \theta+b \cos \theta$, we require a further technique to determine the right choice of phase shift. This difficulty can be circumvented if we draw a diagram showing the signs of $a$ and $b$ and deduce from it the correct phase angle.

## Worked example (2)

We are asked to write $6 \cos x-3 \sin x$ as a single sinusoidal function of the form $R \sin (\theta+\alpha)$. Then we begin by writing

$$
\begin{aligned}
6 \cos x-3 \sin x & =R \sin (x+\alpha) \\
& =R \sin x \cos \alpha+R \cos x \sin \alpha
\end{aligned}
$$

Hence
$R \sin \alpha=6$
$R \cos \alpha=-3$
$R=\sqrt{6^{2}+3^{2}}=\sqrt{45}=3 \sqrt{5}$
$\alpha=\tan ^{-1}\left(\frac{6}{-3}\right)=-63.4^{\circ} \pm 180^{\circ} n \quad n=0, \pm 1, \pm 2 \ldots$
At this point a diagram is sketched to determine the correct phase shift.


The diagram shows how the value of $x=R \cos \alpha$ and $y=R \cos \alpha$ varies with changes in the phase shift $\alpha$.

Both $116.6^{\circ}$ and $-63.4^{\circ} \equiv 296.6^{\circ}$ have $\tan \left(-\frac{6}{3}\right)$. However, in this question the correct phase shift must give
$R \sin \alpha=6$
$R \cos \alpha=-3$
so the correct value of $\alpha$ is $116.6^{\circ}$. Thus
$6 \cos x-3 \sin x=3 \sqrt{5} \sin \left(x+116.6^{\circ}\right) \quad$ (nearest $0.1^{\circ}$ ).

## Example (3)

Find all the values of $\theta$ in the range $0^{\circ} \leq \theta \leq 360^{\circ}$ satisfying
$\cos \theta-3 \sin \theta=\sqrt{5}$
giving your answer in degrees correct to one decimal place.

Solution
Let
$\cos \theta-3 \sin \theta=R \cos (\theta+\alpha)=R \cos \theta \cos \alpha-R \sin \theta \sin \alpha$
Hence
$R \cos \alpha=1$
$R \sin \alpha=-3$
$R=\sqrt{1^{2}+(-3)^{2}}=\sqrt{10}$
$\alpha=\tan ^{-1}\left(\frac{-3}{1}\right)$


From the diagram
$\alpha=\tan ^{-1}\left(\frac{-3}{1}\right)=-71.6^{\circ} \pm n 180^{\circ} \quad n=1,2,3, \ldots$
Thus $\cos \theta-3 \sin \theta=\sqrt{5}$ implies
© blacksacademy.net
$\sqrt{10} \cos \left(\theta-71.6^{\circ}\right)=\sqrt{5}$
$\cos \left(\theta-71.6^{\circ}\right)=\frac{1}{\sqrt{2}}$
$\theta-71.6^{\circ}=\ldots-45^{\circ}, 45^{\circ}, 315^{\circ}, \ldots$
$\theta=26.6^{\circ}, 116.6^{\circ}$ where $0^{\circ} \leq \theta \leq 360^{\circ}\left(\right.$ nearest $\left.0.1^{\circ}\right)$

## Relationship between a function and its reciprocal

Let $y=f(x)$, then the reciprocal of this function is $\frac{1}{y}=\frac{1}{f(x)}$. Suppose further that the function $y=f(x)$ is always positive, $f(x)>0$ for all values of $x$. Then $f(x) \neq 0$ for any $x$ and the reciprocal $\frac{1}{y}=\frac{1}{f(x)}$ is defined for all values of $x$ in the domain of $f(x)$. Then clearly as $y=f(x)$ gets larger and larger then $\frac{1}{y}=\frac{1}{f(x)}$ gets smaller and smaller, and vice-versa. So a maximum of $y=f(x)$ corresponds to a minimum of $\frac{1}{y}=\frac{1}{f(x)}$, and a minimum of $y=f(x)$ corresponds to a maximum of $\frac{1}{y}=\frac{1}{f(x)}$

Example (4)
(a) Express $12 \cos x-5 \sin x$ in the form $R \cos (x+\alpha)$ were $R$ and $\alpha$ are constants with $R>0$ and $0^{\circ}<\alpha<90^{\circ}$.
(b) Hence find the greatest value of

$$
\frac{1}{12 \cos x-5 \sin x+20}
$$

Solution
(a) $12 \cos x-5 \sin x=R \cos (x+\alpha)=R \cos x \cos \alpha-R \sin x \sin \alpha$

Hence

$$
\begin{aligned}
& R \cos \alpha=12 \\
& R \sin \alpha=5 \\
& R=\sqrt{12^{2}+5^{2}}=13 \\
& \alpha=\tan ^{-1}\left(\frac{5}{12}\right)=22.6^{\circ} \quad\left(\text { nearest } 0.1^{\circ}\right)
\end{aligned}
$$

© blacksacademy.net

Note in this solution because both
$R \cos \alpha=12$
$R \sin \alpha=5$
are positive magnitudes the phase angle must lie in the first quadrant. The question also specified $0^{\circ}<\alpha<90^{\circ}$. Then
$12 \cos x-5 \sin x=13 \cos \left(x+22.6^{\circ}\right)$
(b) The minimum value of
$f(x)=12 \cos x-5 \sin x=13 \cos \left(x+22.6^{\circ}\right)$
is -13 when $\cos \left(x+22.6^{\circ}\right)=-1\left[\right.$ that is when $\left.x=202.6^{\circ}+n 360^{\circ}\right]$.
Then $f(x)+20=12 \cos x-5 \sin x+20$ has minimum value $20-13=7$. So the greatest value of $\frac{1}{12 \cos x-5 \sin x+20}$ is $\frac{1}{7}$.

