

© blacksacademy.net

1

Sorting Algorithms

Several algorithms exist for the sorting of data and we will begin by describing them and
discussing their differences.

Insertion sort

Recall that the purpose of a sorting algorithm is to sort elements into an ordered list
according to some definition of what an ordered list is.

The insertion algorithm does this by comparing elements pair wise and putting them pair
wise into the correct order.

An algorithm for an insertion sort is

STEP 0: LET M = LIST LENGTH
 LET R = 1

STEP 1: IF R = M THEN PRINT LIST & STOP

STEP 2: LET S = R

STEP 3: IF NR NR+1 LET R = R + 1 AND GOTO STEP 1

 IF NR > NR+1 SWOP NR AND NR+1

STEP 4: IF S = 1 LET R = R + 1 AND GOTO STEP 1

 IF NS-1 NS LET R = R + 1 AND GOTO STEP 1

 IF NS-1 > NS SWOP NS AND NS-1
 LET S = S – 1 AND GOTO STEP 4

A flow chart for this algorithm is

© blacksacademy.net

2





The algorithm performs the following process on the list of numbers

© blacksacademy.net

3

14, 29, 6, 51, 99, 37, 63, 37

STEP N1 N2 N3 N4 N5 N6 N7 N8 R S S - 1 M

 14 29 6 51 99 37 63 37

0 14 29 6 51 99 37 63 37 1 8

1 14 29 6 51 99 37 63 37 1 8

2 14 29 6 51 99 37 63 37 1 1 0 8

3 14 29 6 51 99 37 63 37 2 1 0 8

1,2 14 29 6 51 99 37 63 37 2 2 1 8

3 14 6 29 51 99 37 63 37 2 2 1 8

4 6 14 29 51 99 37 63 37 2 1 0 8

4 6 14 29 51 99 37 63 37 3 1 0 8

1,2 6 14 29 51 99 37 63 37 3 3 2 8

3 6 14 29 51 99 37 63 37 4 3 2 8

1,2 6 14 29 51 99 37 63 37 4 4 3 8

3 6 14 29 51 99 37 63 37 5 4 3 8

1,2 6 14 29 51 99 37 63 37 5 5 4 8

3 6 14 29 51 37 99 63 37 5 5 4 8

4 6 14 29 37 51 99 63 37 5 4 3 8

4 6 14 29 37 51 99 63 37 6 4 3 8

1,2 6 14 29 37 51 99 63 37 6 6 5 8

3 6 14 29 37 51 63 99 37 6 6 5 8

4 6 14 29 37 51 63 99 37 7 6 5 8

1,2 6 14 29 37 51 63 99 37 7 7 6 8

3 6 14 29 37 51 63 37 99 7 7 6 8

4 6 14 29 37 51 37 63 99 7 6 5 8

4 6 14 29 37 37 51 63 99 7 5 4 8

4 6 14 29 37 37 51 63 99 8 5 4 8

1 6 14 29 37 37 51 63 99

STOP

Bubble Sort

© blacksacademy.net

4

The idea of a bubble sort is that the solved item floats to the top of the list like a bubble in
water. The algorithm passes through the list repeatedly comparing elements pair at a time
and allowing the largest of these to “bubble” up to the top by swapping elements if the
lower element is larger than the upper element. Each time a swap is made the whole
process has to be repeated at least once, so a “flag” must be set to take account of this.

An algorithm for the bubble sort is

STEP 0: LET R = 1
 LET S = 1
 LET M = LIST LENGTH

STEP 1: IF R = M AND S = 0 THEN PRINT LIST AND STOP
 IF R = M AND S = 1 THEN LET R = 1 AND S = 0

STEP 2: IF NR NR+1 LET R = R + 1 AND GOTO STEP 1

 IF NR > NR+1 SWAP NR AND NR+1
 LET S = 1, LET R = R + 1 AND GOTO STEP 1

A flow diagram for this algorithm is:



The bubble sort algorithm performs the following operations on the list

14, 29, 6, 51, 99, 37, 63, 37

© blacksacademy.net

5

STEP N1 N2 N3 N4 N5 N6 N7 N8 R S M

0 14 29 6 51 99 37 63 37 1 1 8

1 14 29 6 51 99 37 63 37 1 1 8

2 14 29 6 51 99 37 63 37 2 1 8

1,2 14 6 29 51 99 37 63 37 3 1 8

1,2 14 6 29 51 99 37 63 37 4 1 8

1,2 14 6 29 51 99 37 63 37 5 1 8

1,2 14 6 29 51 37 99 63 37 6 1 8

1,2 14 6 29 51 37 63 99 37 7 1 8

1,2 14 6 29 51 37 63 37 99 8 1 8

1 14 6 29 51 37 63 37 99 1 0 8

2 6 14 29 51 37 63 37 99 2 1 8

1,2 6 14 29 51 37 63 37 99 3 1 8

1,2 6 14 29 51 37 63 37 99 4 1 8

1,2 6 14 29 37 51 63 37 99 5 1 8

1,2 6 14 29 37 51 63 37 99 6 1 8

1,2 6 14 29 37 51 37 63 99 7 1 8

1,2 6 14 29 37 51 37 63 99 8 1 8

1 6 14 29 37 51 37 63 99 1 0 8

1,2 6 14 29 37 51 37 63 99 2 0 8

1,2 6 14 29 37 51 37 63 99 3 0 8

1,2 6 14 29 37 51 37 63 99 4 0 8

1,2 6 14 29 37 51 37 63 99 5 0 8

1,2 6 14 29 37 37 51 63 99 6 1 8

1,2 6 14 29 37 37 51 63 99 7 1 8

1,2 6 14 29 37 37 51 63 99 8 1 8

1 6 14 29 37 37 51 63 99 1 0 8

2 6 14 29 37 37 51 63 99 2 0 8

1,2 6 14 29 37 37 51 63 99 3 0 8

1,2 6 14 29 37 37 51 63 99 4 0 8

1,2 6 14 29 37 37 51 63 99 5 0 8

1,2 6 14 29 37 37 51 63 99 6 0 8

1,2 6 14 29 37 37 51 63 99 7 0 8

1,2 6 14 29 37 37 51 63 99 8 0 8

1 6 14 29 37 37 51 63 99 8 0 8

A question that arises at this point is which of these two sorting algorithms performs the
task more quickly. On the face of it, the insertion algorithm is quicker than the bubble sort,
because it uses fewer lines. However, that may only be a deceptive appearance.

© blacksacademy.net

6

One way of counting length is to count the number of operations performed during a
procedure. We could count each comparison (1is R RN N ), each setting of a register (let
R = R+1), each process of stopping registers. However, it turns out that for a computer
some procedures are more time consuming than others and here the swaps are crucial –
hence the most efficient algorithm will be the one involving the fewest swops. On this
basis the insertion algorithm involves 7 swaps on our data & the bubble sort 8.

However, the insertion and bubble sorts are regarded as inefficient, especially on longer
lists. The reason why is that each swap results only in numbers being moved up or down
one in the list. If the data is very unordered many swops will be required. In the algorithm
devised by Donald Shell data elements are swapped over a greater distance initially and
this greatly improves efficiency.

The algorithm works by dividing the original list into subsets drawn from elements from
different ends of the data list and sorting these. This enables unsorted items to be moved
over larger distances in the first instance. The early stages of the algorithm pre-sort the list
so that when at the final stage an insertion (or bubble) sort is performed it is very much
more efficient. We illustrate the idea firstly by shell sorting our sample data.

The original list is 14 29 6 51 99 37 63 37
In the first pass, four pairs of elements
are formed & sorted

14
29

6

51

99
37

63

37

The list becomes 14 29 6 37 99 37 63 51
In the second pass, two sets of four
elements are formed and sorted

14
29

6
37

99
37

63
51

The list becomes 6 29 14 37 63 37 99 51
In the last pass the whole list is sorted 6 14 29 37 37 51 63 99

This, in fact, only involves five swaps, so whilst it looks more complicated it is more
efficient. Its efficiency is more readily demonstrated on longer lists. We should also
illustrate its use on lists with odd lengths and lengths not equal to a power of 2.

Firstly, an algorithm for the shell sort is

STEP 0: LET M = LIST LENGTH
 LET K = 2
 LET L = 1

 LET S = 0

STEP 1: IF K  M LIST N1 … NM

 INSERTION SORT, PRINT AND END

STEP 2: LET D = INT (M / K)

© blacksacademy.net

7

STEP 3: IF L > D LET K = 2K, LET L = 1 AND GOTO STEP 1

STEP 4: FOR S = 0 TO K – 1
 LIST NL+SD
 INSERTION SORT LIST
 LET L = L + 1 AND GOTO STEP 3

Flow chart for shell sort:

 

This shell sort algorithm would perform the following process on the list

14, 29, 6, 83, 51, 99, 37, 63, 27, 2, 9

Pass N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 K L D

1 14 29 6 83 51 99 37 63 37 2 9 2 6

© blacksacademy.net

8

 14 37 1
 29 63 2
 6 37 3
 83 2 4
 51 9 5
 99 6

2 14 29 6 2 9 99 37 63 37 83 51 4 3
 14 2 37 83 1
 29 9 63 51 2
 6 99 37 3

3 2 9 6 14 29 37 37 51 99 83 63 8 2
 2 6 29 37 99 63
 9 14 37 51 83

4 2 9 6 14 29 37 37 51 63 83 99 16
 2 6 9 14 29 37 37 51 63 83 99

An even more efficient method of sorting longer lists is the quick sort.

