
 
© blacksacademy.net 

 
1 

 

Stability and Oscillations 
 
 



 
 
Ina game of shove- halfpenny a coin is resting on the edge of a table partly overhanging 
the edge but nonetheless in a stable equilibrium.  Its stability is characterised by the fact 
that it is not falling- that is, it is not losing or gaining gravitational potential energy.  In 
fact, it is the case that for any object (in conservative system) that there is no charge of 
potential energy. 
 
An object is a subject to conservative forces if its total energy is conserved. 
 
Consider an example, an object such as a planet in orbit, where then energy of the object 
takes the form of either kinetic energy or potential energy or both. If the system is 
constant total energy is constant, hence 
 
Kinetic Energy + Potential Energy = Total Energy 
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by Newton’s second Law.  If an object is in equilibrium the 

resultant force, F, is zero.  Hence 
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This tells us that an object where there is a possible exchange only between kinetic and 
potential energy is in a state of equilibrium if, and only if 
 

0
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That is, the rate of change of potential energy is zero. 
 
In fact, this result can be generalised to any situation where potential energy is a fraction 
of a single variable. If a body is subject only to conservative forces, but it is free to move 
so that its potential energy, U, is a functional of a variable, X, such that  U U x , then 

its equilibrium positions are given as solutions to the equation. 
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Stability of the Equilibrium 
 
If the potential energy function is a minimum, then the equilibrium point is stable. 
If the potential energy function is a maximum then the equilibrium point is unstable. 
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To explain why – when an object moves away from equilibrium its potential energy is 
converted to kinetic energy. If the object is in static equilibrium at a minimum of the 
potential energy function then its total energy is equal to its potential energy. Unless it is 
given energy, say in the form of a push- then it cannot acquire any further energy to get 
its motion underway. 
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Even when it is given energy, if the introduction of energy is small ( a small push ) then it 
only has energy to “climb” part of the potential energy “hill” and once it has done s it 
must return to the minimum since the highest point it reaches on the potential energy 
“slope” is nonetheless, an unstable equilibrium. The object subsequently performs small 
oscillations about the equilibrium position- that is, assuming hat the system is 
conservative (after the initial “push” of course ) and no further energy can leak in or out. 
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In order to get the object to leave the stability of the potential energy “well” it must be 
sufficient energy to overcome a neighbouring maximum. 
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The object travels continuously 
in this direction until it reaches
another stable equilibrium  

 
In fact potential energy can also be a function of more than one variable. The case 
considered so far have been one dimensional cases-that is, cases exhibiting one degree of 
freedom 
 
 
Small Oscillations about an equilibrium position 
 
When an object in a stable equilibrium receives a small amount of energy it will oscilate 
about the stable position. If we assume that the system is conservative, then the object 
will ( approximately or exactly) exhibit simple harmonic motion. 
 
A spring /mass system exhibits this kind of stability. 
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Its oscillations are given by; 
 
x kx   
 

where 
0

k
l


  is the stiffness of the spring ( recall that  is the modulus of the spring if 

0l is its natural length. 

 



 
 
A simple pendulum exhibits approximately simple harmonic motion- provided the angle 
of displacement, , is small. 
 
In such systems it is often easier to use the energy method to find the equation of motion- 
that is, to obtain the energy function and differentiate it. 
 
 
Use of the second derivative of potential energy. 
 
The equation if motion for some oscillating systems can be obtained from the second 
derivative of the potential energy function. Assuming that the system is conservative, we 
have 
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where F is the total force and U is the potential energy. 
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Let 0x  represent a point of stable equilibrium. If the object is displaced from the stable 

equilibrium it has been given energy (through an impulse). 
 
However, at the point of stable equations it still experiences zero force. As it moves away 
from equilibrium it experiences a force that “pushes” it back towards the equilibrium a 
restorative force. This force acts in the opposite direction to the displacement. 
 
Let 0x the gradient of the force function  F x be approximated by a tangent. 
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The gradient of  F x is 

 

 1F x   slope of tangent  at 0x  
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Note that the gradient in the diagram is negative. However  0x x  is also negative when 

0x x  as here, so the equation is correct. 

 
That is      0F x x x F x   

 
Since  F x mx   we have    0mx x x F x   

 
Replacing         which gives F x U x F x U x      we obtain 

 

   0mx x x U x    

 
as the approximation to the equation of motion of the object about its equilibrium 
position.  This is the equation of simple harmonic motion. 
 
The fact that 0x  represents a stable equilibrium point means that  0 0U x   

That is, not negative.  However it can be equal to zero, in which case the approximation 
by simple harmonic motion breaks down. 
 
 
Oscillations involving rotation 
 
 If the displacement from stable equilibrium is given in terms of the value of an angle 
rather that linear displacement you can still use the energy method to find the period of 
oscillation. However to do so, you need to be able to express kinetic energy in terms of 
angle. 


