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Static Equilibrium 
 

 

Scalars and vectors 
 

You should already be familiar with the distinction between scalars and vectors.  A vector is a 

physical quantity with magnitude (size) and direction.  A scalar is a physical quantity with only 

magnitude.   

 

 Example (1) 

 Which of the following are vectors and which are scalars? 

 (a) Displacement 

 (b) Distance 

 (c) Number 

 (d) Volume 

 (e) Speed 

 (f) Velocity 

 (g) Acceleration 

 (h) Force 

 (i) Weight 

 (j) Gravitational field constant 

 

 Solution 

 (a) Displacement is distance travelled in a given direction and is a vector 

 (b) Distance is a scalar 

 (c) Number is a scalar 

 (d) Volume is a scalar 

 (e) Speed is a scalar 

 (f) Velocity is speed in a given direction and is a vector 

 (g) Acceleration is rate of change of velocity and is a vector 

 (h) Force is a vector 

 (i) Weight is the force due to gravity and is a vector 

(j) Gravitational field constant is a constant for a given gravitational field and is a 

scalar. 
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You should also be familiar with the way in which we express vectors in one dimension.  A one-

dimensional vector acts either forward (+) or backwards ().  We express such differences by using 

a sign. 

 

 Example (2) 

A tram is stationed at point O.  It runs on a horizontal straight track.  At first the tram 

driver takes it 1500 m due East to point P.  The driver then stops the tram, walks to its 

other end, and drives it 2750 m due West to point Q.  Taking O as the origin and due East 

as the positive direction.  Express as vectors: 

(a)  The displacement of the tram during the first part of the journey from O to P. 

(b) The displacement of the tram during the second part of the journey from P to Q. 

(c) The overall displacement of the tram, which is the vector O to Q. 

 

Solution 

(a) We write this as 

OP  and it is given by 


1500OP .  It is understood that when 

there is no sign in front of a vector then the sign is positive.  That is 

  


1500 1500OP . 

(b)  


2750PQ  

(c)    


1500 2750 1250OQ  

 

Example (2) continued 

Write an equation representing the overall journey involving the displacement vectors 
  

, and OP PQ OQ . 

 

Solution 

 
 

  

 

  
 

1500 2750

1250

OQ OP PQ

 

 

As this equation indicates it is probably better to see the equation as adding the negative 

vector 

PQ  rather than subtracting the (positive) size of the vector 


PQ from the vector 


OP .  In other words, the minus () sign in front of 


PQ expresses its direction.  Thus we 

use 

PQ  to stand for the displacement vector from P to Q and in this question this vector 

is in the opposite sense to the positive direction so it has a negative sign. 
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Vectors in two dimensions 
 

In two dimensions the use of a sign (+ or ) no longer suffices to determine the direction of a 

vector.  We need two numbers to express the two-dimensional nature of such a vector.  In 

navigation a vector is often specified by means of range plus bearing.  The range is the distance 

of the tip of the vector from the origin or point of reference, and the bearing is an angle less than 

360º measured clockwise from the north direction. 

 

North

R

R 

 

In this diagram the vector is represented by R, its bearing by   and the size of the vector by R .  

The Greek letter,  , pronounced “theta” is used to denote the bearing.  The use of Greek letters to 

represent quantities is very common in mathematics.  However, any letter would do.  R  is read 

“the modulus of R” or, alternatively, “the size of R”.  The straight lines are used to denote the 

modulus of a number, which is the positive size of the number regardless of whether it is a 

positive or negative number.   

 

In navigation the North direction is the most obvious reference direction, so is used for a bearing, 

but in coordinate geometry the most common reference direction is the positive x-axis (or 

equivalent) and angles are usually measured in an anti-clockwise direction.  The angle is called the 

argument of the vector and the size is called its modulus.

 

R

R

x

y
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Component representation of vectors 
 

Vectors can be resolved into horizontal and vertical components. 

 

R
vertical component

horizontal component  

 

As the above diagram shows, we can think of a vector as the sum of its horizontal and vertical 

components. 

 horizontal component of vertical component of R R R . 

The horizontal and vertical components are themselves one-dimensional vectors, meaning they 

can take positive or negative values, as the following example illustrates. 

 

Example (3) 

Examine the following diagram showing four vectors P, Q, R and S.   Write down the 

horizontal and vertical components of each of these vectors. 

 

1 2 3 4 5
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7
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-3

-4

P

Q

R

S
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Solution 

 

 

If x is the horizontal component of a vector and y is its vertical component, then we can use (1) 

Pythagoras’s theorem to find its modulus (size) R , and (2) trigonometry to find its argument  .   

 

R

R

x

y

 

  

 

    
 

2 2

1tan tan

R x y

y y

x x

 

 

 Example (3) continued 

 Find the modulus and argument of each of the vectors P, Q, R and S.     

 

 Solution 

Vector 
Horizontal 
component 

Vertical 
component 

P 3 6 

Q 4 4 

R 5 2 

S 2 4 

Vector 
Horizontal 
component 

Vertical 
component 

Modulus Argument 

 x y  2 2R x y       
 

1tan
y

x
 

P 3 6      
2 2

3 6 3 5R        
 

1 6
tan 63.4

3
 

Q 4 4       
2 2

4 4 4 2R          
1 4

tan 135
4

 

R 5 2        
2 2

5 2 29R         
1 2

tan 201.8
5

 

S 2 4       
2 2

2 4 2 5R        
 

1 4
tan 296.6

2
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Regarding the arguments in this solution, recall that the argument is an angle between 0 and 

360 measured anti-clockwise from the x-axis.  We can also reverse this process, so that given the 

modulus and argument of a vector we can find its horizontal and vertical components by means 

of trigonometric relationships. 

 

R

R

x

y

 







cos

sin

x R

y R
 

Note that in these last two equations we have not used the symbol R  for the size of the vector R.  

This is because it is clear from context what is meant.  Possibly it would be better if there were 

always a clear distinction between a vector R and its size R , but it is common in questions 

dealing with forces to omit this distinction, so we also follow that practice here as well.  So the 

symbol R is ambiguous.  In a given context it may represent a vector, or alternatively the size of 

that vector, which is a scalar. 

 

 Example (4) 

 Find the horizontal and vertical components of the following vectors. 

 

 

 

 

  

Solution 

 

x

y
P

Q

60

30

 

 

Vector Modulus Argument 

P 5 60 

Q 4 210 
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 In this solution the components are given to 2 significant figures. 

 

 

Addition of Vectors 
 

As the last example illustrates adding vectors in component form obeys the obvious rule that you 

add the components of the vectors separately.  In the context of forces this means that we add the 

horizontal and the vertical components separately.  This process is called resolving horizontally 

and vertically. 

 

 

Resultant forces 
 
When you are adding forces you are finding the resultant of the force.  This is the single force that 

is equivalent to all the forces acting at a point.  You should already be familiar with this idea in 

the case of one-dimensional applications. 

 

 Example (6) 

A ball bearing is at rest on a horizontal table.  Draw a diagram showing the forces acting 

on the ball bearing and explain in terms of the resultant of these forces why the ball 

bearing is not moving relative to the table. 

 

Solution 

W

N

 

Vector Modulus Argument x y 

 R    cosx R   siny R  

P 5 60  5cos60 2.5x   5sin 60 4.3y  

Q 4 210   4cos210 3.5x    4sin210 2y  
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The ball bearing is subject to two forces.  Its weight (W) pulling it downwards and a 

normal reaction from the surface of the table (N) pushing it upwards.  These two forces 

cancel each other out – their resultant is zero – and that is why the book, relative to the 

table, is not moving.   0W N . 

 

In this context we are applying the idea of a resultant force to the two-dimensional case.  The 

vector F G  is called the resultant of F and G.  The rule for adding vectors that we have just seen 

means that the resultant obeys the parallelogram rule: the resultant is the diagonal of the 

parallelogram formed with the vectors F and G as sides. 

 

F

G

F G + 

 

 

This is also called the triangle law of addition for vectors. By convention a resultant is shown with 

double arrows.  This shows that it is not an additional force but the result of adding together two 

(or more) other forces.   A vector is specified by its size and direction only, so any two parallel 

sides of the parallelogram represent the same vector.  The diagram shows these forces as sides of 

a parallelogram, but this should not confuse you into thinking the forces literally form the sides 

of a parallelogram.  The forces all act on a single point.   The diagram only shows how the 

resultant is found.  Any collection of forces acting at a single point all lying on the same plane can 

be added (or “resolved”) by adding their components.  When forces lie in the same plane they are 

said to be coplanar.  In questions the term coplanar means that the problem can be solved by 

resolving in two dimensions and three dimensional aspects can be ignored.  The term horizontal 

may also be added.  This is to ensure that the plane is lying perpendicular to the force of gravity, 

so it is a way of saying that gravity can be ignored.  So the only forces that need to be resolved are 

those given in the question. 

 

Example (7) 

Three horizontal coplanar forces have magnitudes 5 N, 8 N and 12 N and act at the point 

P n the directions shown in the diagram. 
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5N

8N

12N

60°

P

 

 

Find the magnitude of the resultant and the angle   measured clockwise made by this 

resultant with the force of 5N. 

 

Solution 

For the sake of clarity let us call these three forces F, G, and H respectively. 

 

F = 5N

G = 8N

H = 12N

60°

P

 

 

Resolving horizontally 

        8 12cos60 8 6 2  

Resolving vertically 

           5 12sin60 5 10.4 5.4 2 s.f.  

 

R

F = 5N

5.4

2

R
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The magnitude of the resultant is 

      
222 5.4 5.8 2 s.f.R  

The angle   is 

          
 

1 5.4
180 tan 110 nearest 

2
 

 

 

Static equilibrium 
 

Imagine a motionless sphere hanging by a cable suspended from the ceiling.   

 

 

 

We say that the sphere is in static equilibrium.  It is static because, relative to the ceiling, the 

sphere is not moving.  It is in equilibrium because the resultant forces acting on it are zero.  The 

fact that the resultant force is zero enables us to make deductions about the forces acting on the 

sphere.  We can say that the tension in the cable is equal to the weight of the sphere, because the 

two forces are opposite and cancel one another out.  If a static sphere is being pulled to the side 

by a force F, then once again we can make deductions about the forces acting on the sphere. 

 

 Example (7) 

The diagram shows a sphere of weight 16 N suspended by means of a light cord to the 

ceiling running through a smooth hook.  The cord makes an angle of 60 with the 

horizontal ceiling.  Find the tension in the cord. 

 

60

 

 Solution 

The question uses the term light.  This is introduced to indicate that we can ignore the 

weight of the cord.  The term smooth indicates that the friction at the hook is zero – it too 
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can be ignored.   We begin by making a new diagram showing the forces acting on the 

sphere: the weight of the sphere given as 16 N and the tension T in the cord.    

 

W  = 16

T T

60

60

 

 

As the diagram indicates the magnitude of the tension in the two parts of the cord is 

equal.  Strictly these tensions are vectors, but here we use T to indicate the magnitude of 

the tension.  This magnitude must be equal in both cords because if it were not there 

would be a resultant horizontal force acting on the sphere and the sphere would not be in 

static equilibrium.  The vertical components of the tension in the two parts of the cord 

combine to equal the weight. 

 

60

TT sin 60

 

 

Therefore, resolving vertically 

 



  

2 sin60 16

16
9.23... 9.2 N 2.s.f.

2sin60

T

T
 

 

To solve this problem we employed the aid of two diagrams.  One (given in the question), showing 

the position of the cords and the other (which we drew) showing the forces.  The tension acts in 

the cord so the angle the tension makes with the horizontal is the same as the angle made by the 

tension.  However, the length of the cord has no influence on the size of the tension.   You should 

not confuse the two diagrams.  It is a mistake to think that the length of the cord is a clue as to 

the size of the tension acting in it. 
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 Example (8)  

The diagram shows two spheres L and M of weight 12 N and 6 N respectively suspended 

in static equilibrium by means of light, inextensible cables attached to the spheres at B 

and C and to the horizontal ceiling at A and D.  The length of the cable AB = 10 cm, the 

cable BC is horizontal and the point B lies 8 cm below the ceiling.  The joints at B and C 

are frictionless. 

 

B C

DA

L M  

 

Find the length of the cable CD and the tension running in this cable. 

 

Solution 

The information in the question enables us to find the angle at which the cable AB is 

hanging. 

 

B

A

10
8



 

 

The diagram above indicates that the angle made by AB with the vertical is given by 

 
4

cos
5

 

By Pythagoras’s theorem the side opposite is 6 cm and we also have 

 
3

sin
5

 

Let T be the tension in the cable AB and U be the tension in the cable BC.  The forces 

acting at B are shown in the following diagram. 
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B



12

U

T

 

 

Resolving vertically 

   

 



cos 12

4
12

5
15 N

T

T

T

 

Resolving horizontally 

   

 



sin

3
15

5
9 N

U T

 

Let the tension acting in the cord CD be V and the angle the cord CD makes with the 

vertical be .  Then at C we have the following force diagram. 

 



6

9

V

 

 

This employs the principle that the tension in the cable pulling at B must be equal and 

opposite to the tension in the cable pulling at C. 

Resolving vertically 

   cos 6V  

Resolving horizontally 

   sin 9V  

Therefore 



 
 

Copyright © Black’s Academy Limited – November 2007 
 

14 

 

 


 

 

      
 

1

sin 9
tan

cos 6

9
tan 56.309... 56 nearest 

6

V

V
 

By Pythagoras’s theorem 

     2 29 6 117 10.816... 11 N 2.s.f.V  

Since angle  
9

tan
6

  

 

9

6
117

 

 

 
6

cos
117

 

The length CD is such that  

 
8

cos
CD

 

 

C

8

D

 

 

 


    
 
 
 

8 8 4
117 14.422... 14 cm 2.s.f.

6cos 3

117

CD  

Alternatively 

   


   
8 8

14.422... 14 cm 2.s.f.
cos cos 56.309...

CD  

 

  

 

 

 

 


