## Techniques of Integration

This is a summary unit. The main techniques of integration are summarised here.

## The idea of integration

The idea behind integration derives from the need to find the area under a curve.
Suppose we want to find the distance travelled by an object from time $t_{1}$ to $t_{2}$. In this case we would be required to find the area under a curve
$x=v(t)$
between the points $t_{1}$ and $t_{2}$


This is called "finding a definite integral" and is represented symbolically by
$I=\int_{t_{1}}^{t_{2}} v(t) d t$
© blacksacademy.net

This can be read "the integral of the function. A definite integral has limits written on it that is numbers (or algebraic symbols) specifying the starting and finishing point of the integral. In the above example, these are $t_{1}$ and $t_{2}$.

An indefinite integral takes the form
$I=\int v(t) d t$
In this form there are no limits.

## Integration as the Reverse of Differentiation - Direct Integration

It can be proven that the process of integration is the reverse of the process of differentiation.
$y=f(x) \underset{\text { integrate }}{\stackrel{\text { differentiate }}{\leftrightarrows}} \frac{d y}{d x}=f^{\prime}(x)$
$G(x)=\int g(x) d x \underset{\text { integrate }}{\stackrel{\text { differentiate }}{\rightleftarrows}} g(x)$

If $f^{\prime}(x)$ is the derivative of $f(x)$ then $f(x)$ is the integral of $f^{\prime}(x)$.
We can also express this by

$$
G^{\prime}(x)=g(x) \text { if } \int g(x) d x=G(x)
$$

This result is called "The fundamental theorem of calculus".
Example

$$
\int 2 x^{3} \cdot d x=\frac{1}{2} x^{4}+c
$$

where $c$ is the "constant of integration".
What this means is that there is a family of functions all of which have the same derivative. The indefinite integral of a function is a family of functions.

## Example

$$
\int_{1}^{4} 3 x^{2} d x=\left[x^{3}\right]_{1}^{4}=\left(4^{3}\right)-\left(1^{3}\right)=64-1=63
$$

## Integration to infinity

It is possible to evaluate an integral where one or both of the limits is $\infty$, provided that the integrand $f(x)$ tends to some finite limit as $x$ tends to either $+\infty$ or $-\infty$ (or both, whatever is appropriate).

## Example

$$
I=\int_{1}^{\infty} \frac{1}{x} d x=\int_{1}^{\infty} x^{-1} d x=\left[-x^{-2}\right]_{1}^{\infty}=\left[\frac{-1}{x^{2}}\right]_{1}^{\infty}=0-1=-1
$$

## Integration as the Sum of Approximations

We are required to find the area under a given curve, represented by the function $y=f(x)$

© blacksacademy.net

We approximate the area by rectangles. Each rectangle will have the same width:


As the rectangles get smaller and smaller - that is, as the width $\delta x$, of the rectangle gets smaller - the sum of the area of the rectangles gets closer and closer to the area under the graph.

The area of the $r+1$ th rectangle is
$\delta x \times f(a+r \delta x)$
So the total area is:
Area $=\sum_{r=0}^{n-1} \delta x \times f(a+r \delta x) \quad$ where there are $n$ rectangles
In the limit, as $\delta x \rightarrow 0$, this area becomes equal to the area under the curve.


We denote this limit by:
Area $=\int_{\mathrm{a}}^{\mathrm{b}} f(x) d x=\lim _{\delta x \rightarrow 0} \sum_{r=0}^{n-1} \delta x \times f(a+r \delta x)$
The symbol
$\int_{a}^{b} f(x) d x$
is read "the integral of the function $f(x)$ from $a$ to $b$.

## Direct Integration

Integration is the inverse process of differentiation.

## Primitive $\underset{ }{\stackrel{\text { Differentiate }}{\rightleftarrows}}$ Derivative $F(x)$ <br> 

Some standard integrals found by direct integration are:

| function | Integral |
| :--- | :--- |
| $f(x)$ | $F(x)=\int f(x) \cdot d x$ |
| $x^{n}$ | $\frac{x^{n+1}}{n+1}+c$ |
| $1 / \mathrm{x}$ | $\ln x+c$ |
| $e^{x}$ | $e^{x}+c$ |
| $\sin x$ | $-\cos x+c$ |
| $\cos x$ | $\sin x+c$ |

Other functions should also be integrated directly.

## Example

$$
\int \sec ^{2} 2 x=\frac{1}{2} \tan 2 x+c
$$

## Example

$$
\text { If } \frac{d y}{d x}=\sec ^{2} 2 x+\operatorname{cosec}^{2} 3 x \text { find } y
$$

Solution

$$
\begin{aligned}
& \frac{d y}{d x}=\sec ^{2} 2 x+\operatorname{cosec}^{2} 3 x \\
& \int\left(\sec ^{2} 2 x+\operatorname{cosec}^{2} 3 x\right) d x=\int \sec ^{2} 2 x d x+\int \operatorname{cosec}^{2} 3 x d x=\frac{\tan 2 x}{2}-\frac{\cot 3 x}{3}+c
\end{aligned}
$$

## Integration of indefinite integrals by the method of substitution

This technique is really an extension of the technique of direct integration. It is often easier to recognise an integral if a substitution can be applied.

The technique of integration by substitution is best learnt through examples.
The formula is:
$\int\left(f^{\prime} \circ g\right) \times g^{\prime}=f \circ g$
but it is from examples that you learn how to use this.

## Example

Find $\int \frac{2 x}{(2 x-1)^{2}} d x$
Let $u=2 x-1$
Then
$\frac{d u}{d x}=2$
$\therefore d x=\frac{1}{2} d u$
and also $2 x=u+1$
Hence

$$
\begin{aligned}
\int \frac{2 x}{(2 x-1)^{2}} d x & =\int \frac{u+1}{u^{2}} \cdot \frac{1}{2} d u \\
& =\int \frac{1}{2 u}+\frac{1}{2 u^{2}} d u \\
& =\frac{1}{2} \ln |2 u|-\frac{1}{2} u^{-1}+c \\
& =\frac{1}{2} \ln 2(2 x-1)-\frac{1}{2}(2 x-1)^{-1}+c \\
& =\ln \sqrt{4 x-2}-\frac{1}{2(2 x-1)}+c
\end{aligned}
$$

## Integration of definite integrals by the method of substitution

Example
Evaluate $\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} \sin x \cdot \cos ^{4} x d x$
Solution

Method (1): Evaluating in the original variable with no change of limits.
The indefinite integral is
$\int \sin x \times \cos ^{4} x d x$
Making the substitution, $u=\cos x$, then $d u=-\sin x d x$; hence,
$\int \sin x \times \cos ^{4} x d x=-\int u^{4} d u=-\frac{u^{5}}{5}+c=-\frac{1}{5} \cos ^{5} x+c$
© blacksacademy.net

Therefore,
$\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} \sin x \times \cos ^{4} x d x=\left[\frac{1}{5} \cos ^{5} x\right]_{\frac{\pi}{2}}^{\frac{3 \pi}{4}}=\frac{1}{5}\left[\cos ^{5} x\right]_{\frac{\pi}{2}}^{\frac{3 \pi}{4}}=\frac{1}{40} \sqrt{2}$
Method (2): Evaluating in the substituted variable with a change of limits.
$\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} \sin x \times \cos ^{4} x d x$
We make the substitution, $u=\cos x$, giving $d u=-\sin x d x$
but we also replace the limits.
When $x=\frac{3 \pi}{4}, u=\cos \frac{3 \pi}{4}=-\frac{1}{\sqrt{2}}$
When $x=\frac{\pi}{2}, \quad u=\cos \frac{\pi}{2}=0$
hence,
$\int_{\frac{\pi}{2}}^{\frac{3 \pi}{4}} \sin x \times \cos ^{4} x d x=-\int_{0}^{-\frac{1}{\sqrt{2}}} u^{4} d u=-\left[\frac{u^{5}}{5}\right]_{0}^{-\frac{1}{\sqrt{2}}}=-\frac{1}{5}\left(-\frac{1}{4 \sqrt{2}}-0\right)=\frac{1}{40} \sqrt{2}$

## Applications of integration to find areas

## Example

Find the area under the curve $y=x^{3}-4 x$ between the points (i) 0 and 2; (ii) 2 and 4 .

Solution
(i) Area $=\int_{a}^{b} f(x) d x$
$=\int_{0}^{2} x^{3}-4 x d x=\left[\frac{1}{4} x^{4}-2 x^{2}\right]_{0}^{2}=(4-8)-(0)=-4$

The negative area corresponds to an area under the curve.
(ii) Area $=\int_{a}^{b} f(x) d x$

$$
=\int_{2}^{4} x^{3}-4 x d x=\left[\frac{1}{4} x^{4}-2 x^{2}\right]_{2}^{4}=(64-32)-(4-8)=32+4=36
$$

## Area Bounded by Two Curves

Suppose we have two functions $f(x)$ and $g(x)$.


We are asked to find the area bounded by these two functions with limits $a$ and $b$. Then:
Area $=\int_{a}^{b}[f(x)-g(x)] \cdot d x$

## Example

Find the area bounded by the curves, $y=\sqrt{3 x}$ and $y=2 x-3$.
Answer
Area $=\int_{a}^{b}[f(x)-g(x)] \cdot d x$
Here $f(x)=\sqrt{3 x}$ and $g(x)=2 x-3$

We need to find the point of intersection of the two curves:
$\sqrt{3 x}=2 x-3$
$3 x=(2 x-3)^{2}=4 x^{2}-12 x+9$
$4 x^{2}-15 x+9=0$
$(4 x-3)(x-3)=0$
$x=3 / 4$ or $x=3$

When $x=3 / 4, y=\sqrt{9 / 4}=3 / 2$
When $x=3, y=3$
In fact, the $x=3 / 4$ solution would correspond to the intersection of the two curves below the $x$-axis. It shows up as $+3 / 2$ because we squared the term $\sqrt{3 x}$. We discard this solution. Therefore, we require the integral:

$$
\begin{aligned}
\text { Area } & =\int_{0}^{3}\left[(3 x)^{\frac{1}{2}}-(2 x-3)\right] \cdot d x \\
& =\int_{0}^{3}\left[(3 x)^{\frac{1}{2}}-2 x+3\right] \cdot d x \\
& =\left[\frac{2}{9}(3 x)^{\frac{3}{2}}-x^{2}+3 x\right]_{0}^{3}=\left(\frac{2 \times 27}{9}-9+9\right)-(0)=6
\end{aligned}
$$

## Integration by Parts

Integration by parts is the reverse of the process of differentiation of a product.
The product rule for differentiation is:
$(f \times g)^{\prime}=f^{\prime} \times g+f \times g^{\prime}$

Rearrangement gives:

$$
f \times g^{\prime}=(f \times g)^{\prime}-f^{\prime} \times g
$$

We can then integrate both sides to obtain the formula for integration by parts
$\int f \cdot g^{\prime}=f \cdot g-\int f^{\prime} \cdot g$
In this formula $f$ is a function to be differentiated and $g^{\prime}$ is a function to be integrated.

## Example

To find $\int x^{4} \ln x d x$

$$
\begin{array}{ll}
f(x)=\ln x & g^{\prime}(x)=x^{4} \\
f^{\prime}(x)=\frac{1}{x} & g(x)=\frac{1}{5} x^{5}
\end{array}
$$

The integration by parts formula is

$$
\int f \cdot g^{\prime}=f \cdot g-\int f^{\prime} \cdot g
$$

Substitution into it gives

$$
\begin{aligned}
\int x^{4} \ln x d x & =\frac{1}{5} x^{5} \times \ln x-\int \frac{1}{x} \times \frac{1}{5} \times x^{5} d x \\
& =\frac{1}{5} x^{5} \times \ln x-\int \frac{1}{5} \times x^{4} d x \\
& =\frac{1}{5} x^{5} \times \ln x-\frac{1}{5} \int x^{4} d x
\end{aligned}
$$

And $\int x^{4} d x=\frac{1}{5} x^{5}+c$
So
$\int x^{4} \ln x d x=\frac{1}{5} x^{5} \times \ln x-\frac{1}{5} \times \frac{1}{5} \times x^{5}=\frac{1}{5} x^{5} \times \ln x-\frac{1}{25} \times x^{5}$.

## Example

Find $\int e^{2 x} \cos x . d x$
Solution

$$
\begin{array}{ll}
f(x)=e^{2 x} & g^{\prime}(x)=\cos x \\
f^{\prime}(x)=2 e^{2 x} & g(x)=\sin x
\end{array}
$$

The integration by parts formula is
$\int f g^{\prime}=f g-\int f^{\prime} g$
Substitution into it gives
$\int e^{2 x} \cos x d x=-e^{2 x} \sin x-\int 2 e^{2 x} \sin x d x$
We can take the 2 on the right-hand-side outside the integral side

$$
\begin{equation*}
\int e^{2 x} \cos x d x=-e^{2 x} \sin x-2 \int e^{2 x} \sin x d x \tag{1}
\end{equation*}
$$

W now need to find $\int e^{2 x} \sin x d x$.

$$
\begin{array}{ll}
f(x)=e^{2 x} & g^{\prime}(x)=\sin x \\
f^{\prime}(x)=2 e^{2 x} & g(x)=-\cos x
\end{array}
$$

Then

$$
\int e^{2 x} \sin x d x=-e^{2 x} \cos x-\int 2 e^{2 x} \cos x d x
$$

Substituting for $\int e^{2 x} \sin x d x$ at (1) gives

$$
\begin{aligned}
& \int e^{2 x} \cos x d x=e^{2 x} \sin x-2\left\{-e^{2 x} \cos x+2 \int e^{2 x} \cos x d x\right\} \\
& \therefore \int e^{2 x} \cos x d x=e^{2 x} \sin x+2 e^{2 x} \cos x-4 \int e^{2 x} \cos x d x
\end{aligned}
$$

Collecting the terms in $\int e^{2 x} \cos x d x$ gives

$$
\begin{aligned}
& 5 \int e^{2 x} \cos x d x=e^{2 x} \sin x+2 e^{2 x} \cos x \\
& \therefore \int e^{2 x} \cos x d x=\frac{1}{5}\left(e^{2 x} \sin x+2 e^{2 x} \cos x\right)
\end{aligned}
$$

The Integral of $1 / x$

$$
\int \frac{1}{x} d x=\ln |x|+c
$$

## Example

$$
\begin{aligned}
& \int_{-2}^{-1} \frac{1}{x} d x=-\int_{-2}^{-1}-\frac{1}{x} d x \\
& =-[-\ln (-x)]_{-2}^{-1} \\
& =-(-\ln (1)+\ln (2)) \\
& =-\ln (2)
\end{aligned}
$$

The use of $|x|$ shortens this process:

$$
\begin{aligned}
& \int_{-2}^{-1} \frac{1}{x} d x=-[\ln |x|]_{-2}^{-1} \\
& =\ln (1)-\ln (2) \\
& =-\ln (2)
\end{aligned}
$$

Integrals of $\cos ^{2} x$ and $\sin ^{2} x$
To integrate $\int \sin ^{2} x d x$
© blacksacademy.net

$$
\begin{aligned}
\cos 2 x & =1-2 \sin ^{2} x \\
& \therefore \sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x \\
& \therefore \int \sin ^{2} x d x=\int\left(\frac{1}{2}-\frac{1}{2} \cos 2 x\right) d x \\
& =\frac{x}{2}-\frac{1}{4} \sin 2 x+c
\end{aligned}
$$

## Volume of Revolution about the $x$-axis

When a function, $y=f(x)$, is rotated about the $x$-axis, the volume generated is given by:
$V=\pi \int_{a}^{b} y^{2} d x$.
Here $a$ and $b$ are the lower and upper bounds of the volume.

$V=\int_{a}^{b} \pi y^{2} d x$.

## Example

Find the volume of revolution when $y=2 x^{2}$ is rotated about the $x$-axis between $x=1$ and $x=3$.
© blacksacademy.net

Solution

$$
\begin{aligned}
y & =2 x^{2} \\
V & =\int_{a}^{b} \pi y^{2} d x \\
& =\int_{1}^{3} \pi\left(2 x^{2}\right)^{2} d x=\pi \int_{1}^{3} 4 x^{4} d x=\pi\left[\frac{4}{5} x^{5}\right]_{1}^{3}=\pi\left(\frac{972}{5}-\frac{4}{5}\right)=\frac{968 \pi}{5}
\end{aligned}
$$

## Volume of Revolution about the $y$-axis

The volume of revolution about the $y$-axis is:


The proof is similar to the above proof for the volume of revolution about the $x$-axis.
Example
To find the volume of revolution when $y^{2}=4-x$ is rotated about the $y$-axis.


To find the limits of the integration:
when $x=4$ then $y^{2}=4$,

$$
\text { so } y= \pm 2
$$

$$
V=\pi \int_{-2}^{2} x^{2} d y
$$

$$
=\pi \int_{-2}^{2}\left(4-y^{2}\right)^{2} d y
$$

$$
=\pi \int_{-2}^{2} 16-8 y^{2}+y^{4} d y
$$

$$
=\pi\left[16 y-\frac{8 y^{3}}{3}+\frac{y^{5}}{5}\right]_{-2}^{2}
$$

$$
=\left(32-\frac{64}{3}+\frac{32}{5}\right)-\left(-32+\frac{64}{3}-\frac{32}{5}\right)
$$

$$
=32-\frac{64}{3}+\frac{32}{5}+32-\frac{64}{3}+\frac{32}{5}
$$

$$
=64-\frac{128}{3}+\frac{64}{5}
$$

$$
=\frac{960-640+192}{15}
$$

$$
=\frac{512}{15}
$$

