Test for the Mean of a Poisson distribution

The test for the mean of a Poisson distribution is best illustrated through a worked example.

Example

(a) In the region of a fault line earthquakes can be experiences. A certain town is expected to receive 5 minor tremors registering above 3.0 on the Richter scale in a given year. In one year 10 such tremors were recorded. Model the number of these tremors as a Poisson distribution and test at the 5% level of significance the hypothesis that there has been a change in the average number of tremors per year.
(b) Determine the critical region for the test, and state what the actual significance level is; hence, determine the probability of a type I error.
(c) Suppose that in fact the mean number of tremors has increased to 7 per year. Find the probability of making a type II error with the test provided by the critical region that you have just identified in part (b)

Solution

(a)

We have $X \sim P o(5)$
There is no prior expectation that the number of tremors has increased, so the test is a two-tailed test. This means that the critical region at both ends of the distribution should be 2.5%.

Thus, stating the null and alternative hypotheses
$H_{0} \quad \mu=5$
$H_{1} \quad \mu \neq 5$

We need to find the probability of 10 or more such tremors under the null hypothesis.
To do this we compute the values of the outcomes upto and including $X=9$, as follows
$P(X=0)=e^{-5} \times \frac{5^{0}}{0!}=0.006738$
$P(X=1)=e^{-5} \times \frac{5^{1}}{1!}=0.033690$

$$
\begin{aligned}
& P(X=2)=e^{-5} \times \frac{5^{2}}{2!}=0.084224 \\
& P(X=3)=e^{-5} \times \frac{5^{3}}{3!}=0.140374 \\
& P(X=4)=e^{-5} \times \frac{5^{4}}{4!}=0.175467 \\
& P(X=5)=e^{-5} \times \frac{5^{5}}{5!}=0.175467 \\
& P(X=6)=e^{-5} \times \frac{5^{6}}{6!}=0.146223 \\
& P(X=7)=e^{-5} \times \frac{5^{7}}{7!}=0.104445 \\
& P(X=8)=e^{-5} \times \frac{5^{8}}{8!}=0.065278 \\
& P(X=9)=e^{-5} \times \frac{5^{9}}{9!}=0.036266 \\
& P(X \leq 9)=0.006738+0.033690+0.084224+0.140375+0.175467 \\
& =0.968173 \quad+0.175467+0.146223+0.104445+0.065278+0.036266
\end{aligned}
$$

Hence
$P(X \geq 10)=1-P(X \leq 9)=1-0.968173=0.031827$
Since this value is greater than the critical value of 0.025 we do not have evidence to reject the null hypothesis.

Accept H_{0}, Reject H_{1}
(b)

The Poisson distribution is a discrete distribution. We require a test that ensures that the probability of rejecting the null hypothesis is less than 5% in total; and for each tail of the distribution, is less than 2.5%. At the lower end of the scale, this is provided by $X=0$, with probability $P(X=0)=0.006738$. The cumulative probability for $X \leq 1$ is given by

$$
\begin{aligned}
P(X \leq 1) & =P(X=0)+P(X=1) \\
& =0.006738+0.033690 \\
& =0.040428
\end{aligned}
$$

This is greater than 0.025 , so in fact, at the lower tail the critical region is just $X=0$ and the significance level is 0.006738 .

For the upper end of the tail we need first to calculate the probability that $X=10$. This is
$P(X=10)=e^{-5} \times \frac{5^{10}}{10!}=0.018133$

Adding this to the cumulative probability for $P(X \leq 9)$, we obtain the cumulative probability for $P(X \leq 10)$ as $0.968173+0.018133=0.986306$

Hence the probability
$P(X>10)=1-0.986306=0.013694$

This is less than the desired level of 2.5%, but this is a consequence of any test on a discrete probability distribution.

The critical region in the upper tail is, then, $X>10$, and the significance level for this tail is 0.013694 . We will reject the null hypothesis if

Either $X=0$ or $X>10$
The combined significance level is $0.006738+0.013694=0.020432$ and this is the probability of a type I error, which is the error of rejecting the null hypothesis when in fact it is true.
(c)

A type II error is the error of accepting the null hypothesis when in fact it is false. In order to assess a type II error we must have a definite alternative hypothesis, here provided by the assertion that the mean is in fact 7 tremors in a given year. Thus, we seek the probability
$P\left(\operatorname{accept} H_{0} \mid \mu=7\right)$
We accept the null hypothesis if the test result is $1 \leq X \leq 10$ so we need to find the probability of X lying in this region under the hypothesis that $X \sim P o(7)$

We begin as usual by computing the probabilities
$P(X=1)=e^{-7} \times \frac{7^{1}}{1!}=0.006383$

$$
\begin{aligned}
& P(X=2)=e^{-7} \times \frac{7^{2}}{2!}=0.022341 \\
& P(X=3)=e^{-7} \times \frac{7^{3}}{3!}=0.052129 \\
& P(X=4)=e^{-7} \times \frac{7^{4}}{4!}=0.091226 \\
& P(X=5)=e^{-7} \times \frac{7^{5}}{5!}=0.127717 \\
& P(X=6)=e^{-7} \times \frac{7^{6}}{6!}=0.149003 \\
& P(X=7)=e^{-7} \times \frac{7^{7}}{7!}=0.149003 \\
& P(X=8)=e^{-7} \times \frac{7^{8}}{8!}=0.130377 \\
& P(X=9)=e^{-7} \times \frac{7^{9}}{9!}=0.101405 \\
& P(X=10)=e^{-7} \times \frac{7^{10}}{10!}=0.070983
\end{aligned}
$$

Hence the probability of the test result falling inside this acceptance region, under the hypothesis that the mean is in fact 7 , is given by

$$
\begin{aligned}
P & =0.006383+0.022341+0.052129+0.091226+0.127717 \\
& +0.149003+0.149003+0.130377+0.101405 \\
& =0.829584 \\
& =83.0 \%(3 . S . F)
\end{aligned}
$$

This error is very high. In other words, with the significance level set in the way determined in part (b), the test is very likely not to record a change in the mean.

