The Geometric Distribution

Prerequisites

You should have studied discrete probability distributions.

Definition of a discrete random variable

Let X be a variable such that
(a) It is discrete, meaning it can only take n exact values $x_{1}, x_{2}, \ldots, x_{n}$. When X takes the value x_{i} we write $X=x_{i}$.
(b) It is random, meaning that with each value x_{i} that the variable takes, there is associated a probability p_{i}. We write this $P\left(X=x_{i}\right)=p_{i}$. The assignment of probabilities to each value that X can take is called a discrete probability distribution.
(c) Because it is random it obeys the law of total probability. The sum of all the probabilities for all n values is equal to 1 .

You should also have studied geometric progressions.

Example (1)

A geometric progression has first term $\frac{1}{6}$ and common ratio $\frac{5}{6}$. The nth term of this series is denoted by u_{n}.
(a) Find
(i) The third term u_{3}.
(ii) The nth term u_{n}
(iii) The sum to infinity.
(b) Find $\left(\frac{5}{6}\right)^{2},\left(\frac{5}{6}\right)^{3},\left(\frac{5}{6}\right)^{20},\left(\frac{5}{6}\right)^{50}$ as decimals and conjecture to what number $\left(\frac{5}{6}\right)^{n}$ tends as $n \rightarrow \infty$; that is, as n gets larger and larger without limit.
(c) Explain why the variable X that assigns to the value n the probability u_{n}, $P(X=n)=u_{n}$, may be regarded as a discrete random variable.

Solution
(a) $a=\frac{1}{6} \quad r=\frac{5}{6}$
(i) $\quad u_{3}=a r^{2}=\frac{1}{6} \times\left(\frac{5}{6}\right)^{2}=\frac{25}{216}$
(ii) $\quad u_{n}=a r^{n}=\frac{1}{6} \times\left(\frac{5}{6}\right)^{n-1}$
(iii)

$$
S_{\infty}=\frac{a}{1-r}=\frac{\frac{1}{6}}{1-\frac{5}{6}}=1
$$

(b)
$\left(\frac{5}{6}\right)^{2}=0.6944 \ldots \quad\left(\frac{5}{6}\right)^{3}=0.5787 \ldots \quad\left(\frac{5}{6}\right)^{20}=0.0260 \ldots \quad\left(\frac{5}{6}\right)^{50}=0.0001 \ldots$
This number is getting smaller and smaller the larger n gets. We conjecture that as $n \rightarrow \infty,\left(\frac{5}{6}\right)^{n} \rightarrow 0$ which we write as
$\lim _{n \rightarrow \infty}\left(\frac{5}{6}\right)^{n}=0$.
(c) By part (a)(iii) the sum of all the assignments given in part (a)(ii) as
$P(X=n)=u_{n}=a r^{n}=\frac{1}{6} \times\left(\frac{5}{6}\right)^{n-1}$
is equal to 1 . This assignment obeys the law of total probability. Thus the values $u_{n}=a r^{n}=\frac{1}{6} \times\left(\frac{5}{6}\right)^{n-1}$ may be interpreted as probabilities. The entire set of these values is as follows.

n	1	2	3	4	\ldots	n	\ldots
$P(X=n)$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{25}{216}$	$\frac{125}{1296}$	\ldots	$\frac{1}{6} \times\left(\frac{5}{6}\right)^{n-1}$	\ldots

This table is a probability distribution.

Remark

In the definition of a probability density function given above we wrote that such a function must take n exact values $x_{1}, x_{2}, \ldots, x_{n}$. For the geometric progression above to be interpreted as a probability distribution we must allow that n may be potentially infinite. We state (without proof) that the conjecture $n \rightarrow \infty,\left(\frac{5}{6}\right)^{n} \rightarrow 0$ is true, which goes further to justify this extension of the concept of a discrete probability distribution to allow for an infinite set of
values and their associated probabilities because the probability of the nth term gets smaller and smaller and converges on 0 as n gets larger and larger.

The geometric distribution

The geometric distribution is the discrete probability distribution that arises when a trial is repeated only until a "success" (or "failure") is obtained.

Example (2)

A fair cubical die is tossed until a 6 is thrown. Let X be the random variable representing the number of throws of the die until a 6 is obtained. Draw a probability tree to represent this situation and find the probability distribution of X.

Solution

$$
P(6)=\frac{1}{6} \quad P(\text { not } 6)=P(\overline{6})=\frac{5}{6}
$$

The probability tree is

The tree carries on indefinitely, but the probability of not- 6 becomes less and less, tending to zero. The probability distribution is precisely the geometric progression that we investigated in example (1).

n	1	2	3	4	\ldots	n	\ldots

$P(X=n)$	$\frac{1}{6}$	$\frac{5}{36}$	$\frac{25}{216}$	$\frac{125}{1296}$	\ldots	$\frac{1}{6} \times\left(\frac{5}{6}\right)^{n-1}$	\ldots

In this example we immediately recognise that this is common situation that does not depend on the precise probability $p=\frac{1}{6}$. The probability p is the parameter of the distribution. In general, if the probability of a success is p, and the probability of a failure is q, then the probability that n trials are required before a success is obtained is $P(X=n)=p \times q^{n-1} \quad$ where $q=1-p$.

Definition of a geometric distribution

A discrete random variable X having probability density function of the form
$P(X=n)=p \times q^{n-1}$ where $0 \leq p \leq 1$ and $q=1-p$
is said to follow a geometric distribution for $n=1,2,3, \ldots$
This is written $X \sim G e o(p)$

The expression $X \sim G e o(p)$ is read, " X follows a geometric distribution with parameter p ". As usual we are interested in finding the mean (expectation) and variance of a geometric distribution. This we state as follows.

Expectation and variance of a geometric distribution

Given $X \sim \operatorname{Geo}(p)$ then
$E(X)=\frac{1}{p}$
$\operatorname{Var}(X)=\frac{q}{p^{2}}$

Example (3)

During March the probability of rain is 0.25 on any day. Let X be the discrete random variable denoting the number of days until it rains following a dry day.
(a) Find the probability that the first rainy day will be the $4^{\text {th }}$ day following a dry day.
(b) Find the probability that it will not rain until after the $4^{\text {th }}$ day following a dry day.
(c) Given that a certain day is dry, find the number of days that one would expect to wait on average until there is another rainy day.
(d) Find the variance of the probability distribution of X.

Solution
The probability tree illustrates that this is a geometric probability distribution

This illustrates that the problem may be modelled as a geometric distribution with parameter 0.25. Hence $X \sim G e o(0.25)$.
(a) $\quad P(X=4)=0.25 \times(0.75)^{3}=0.1055$ (4 s.f.)
(b) $\quad P(X>4)=1-P(X=1)-P(X=2)-P(X=3)-P(X=4)$

$$
=1-0.25-0.25 \times 0.75-0.25 \times 0.75^{2}-0.25 \times 0.75^{3}
$$

$$
=1-0.25-0.1875-0.1406-0.1055
$$

$$
=0.3164
$$

(c) $E(X)=\frac{1}{p}=\frac{1}{0.25}=4$

We expect on average that it will rain on the $4^{\text {th }}$ day following a day on which it does not rain.
(d) $\operatorname{Var}(X)=\frac{q}{p^{2}}=\frac{0.75}{(0.25)^{2}}=12$

