The Integral of $1 / x$

The Integral of $1 / x$ is given by:
$\int \frac{1}{x} d x=\ln |x|+c$
This expression involves the variable x enclosed within the modulus function. To explain why we introduce the modulus in this context we must first appreciate that $\ln x$ is undefined for $x \leq 0$,

Hence, we cannot substitute negative values directly into $\ln x$. To avoid this we replace the negative expression $1 / x$ in the integrand (that is, the expression to be integrated) by $-\frac{1}{-x}$. When this is integrated, we obtain $-(-\ln (-x))$ or $\ln (-x)$. This is equivalent to taking the natural logarithm of the modulus of x - that is, $\ln |x|$.

More explicitly
© blacksacademy.net

If $a, b<0$ then

$$
\begin{aligned}
\int_{a}^{b} \frac{1}{x} d x & =-\int_{a}^{b}-\frac{1}{x} d x \\
& =-\int_{a}^{b} \frac{1}{-x} d x \\
& =-[-\ln (-x) d x]_{a}^{b} \\
& =[\ln (-x)]_{a}^{b}
\end{aligned}
$$

Since $a, b<0$ this is equivalent to $\ln |x|$.
If $a, b<0$ then

$$
\int_{a}^{b} \frac{1}{x} d x=[\ln x]_{a}^{b}=[\ln |x|]_{a}^{b}
$$

Either way
$\int_{a}^{b} \frac{1}{x} d x=[\ln |x|]_{a}^{b}$

Example

$$
\begin{aligned}
& \int_{-2}^{-1} \frac{1}{x} d x=-\int_{-2}^{-1}-\frac{1}{x} d x \\
& =-[-\ln (-x)]_{-2}^{-1} \\
& =-(-\ln (1)+\ln (2)) \\
& =-\ln (2)
\end{aligned}
$$

The use of $|x|$ shortens this process

$$
\begin{aligned}
\int_{-2}^{-1} \frac{1}{x} d x & =-[\ln |x|]_{-2}^{-1} \\
& =\ln (1)-\ln (2)=-\ln (2)
\end{aligned}
$$

© blacksacademy.net

