The Uniform Distribution

Prerequisites

You should be familiar with the properties of continuous probability distributions.
(1) Definition of a probability density function

Let $f(x)$ be a continuous function. If
(1) $\quad f(x) \geq 0$ for all x
(2) $\int_{-\infty}^{\infty} f(x) d x=1$
then $f(x)$ defines a continuous probability density function. The condition $f(x) \geq 0$ for all x is necessary because we cannot have negative probabilities. Note that the expression $\int_{-\infty}^{\infty} f(x) d x=1$ may also be written $\int_{\text {all } x} f(x) d x=1$. It says that the total area under the probability density function $f(x)$ for all values of x is equal to 1 .
(2) Expectation and variance of a continuous probability distribution

If X is a continuous random variable having probability density function $f(x)$ then the expectation is $E(x)=\int_{-\infty}^{\infty} x f(x) d x$. The expectation $E(x)$ may also be called the mean of the distribution. We also have
$E\left(X^{2}\right)=\int_{-\infty}^{\infty} x^{2} f(x) d x \quad \operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
where $\operatorname{var}(X)$ is the variance of the distribution.
(3) Cumulative distribution function

If X is a random variable with probability density function $f(x)$ then the cumulative distribution function of X is given by $F(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x$.
(4)

Median
Let m denote the median value. Then, if $F(t)$ is the cumulative distribution function for $X, F(m)=\frac{1}{2}$. If $f(x)$ is the probability density function for X then $\int_{-\infty}^{m} f(x) d x=\frac{1}{2}$.

(5) Quartiles, percentiles

The first (lower) and third (upper) quartiles are the values t_{1} and t_{3} such that

$$
F\left(t_{1}\right)=\frac{1}{4} \text { and } F\left(t_{3}\right)=\frac{3}{4}
$$

where $F(t)$ is the cumulative probability function. A percentile is a value of t such that $F(t)$ is equal to a given percentage of the cumulative distribution.

Example (1)

The continuous random variable X has probability density function f given by
$f(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{8}{3} x+\frac{1}{3} & \text { for } 0 \leq x \leq t \\ 0 & \text { for } x>t\end{cases}$
(a) Find t.
(b) Find the cumulative distribution function for X.
(c) Evaluate $P\left(\frac{1}{4} \leq X \leq \frac{1}{3}\right)$.
(d) Find the median of X.
(e) Find the mean and variance of X.

Solution

(a) By the law of total probability
$\int_{0}^{t} f(x) d x=1$
Hence
$\int_{0}^{t} \frac{8}{3} x+\frac{1}{3} d x=1$
$\left[\frac{4}{3} x^{2}+\frac{1}{3} x\right]_{0}^{t}=1$
$\frac{1}{3}\left(4 t^{2}+t\right)=1$
$4 t^{2}+t-3=0$
$(4 t-3)(t+1)=0$
$t=-1$ or $t=\frac{3}{4}$
t cannot be negative; therefore $t=\frac{3}{4}$
(b) The cumulative distribution function on the interval for $0 \leq x \leq \frac{3}{4}$ is

$$
F(t)=\int_{0}^{t} f(x) d x=\frac{4}{3} t^{2}+\frac{1}{3} t
$$

We write the cumulative distribution function in terms of the original variable and define it piecewise as follows.

$$
F(x)= \begin{cases}0 & \text { for } x<0 \\ \frac{1}{3}\left(4 x^{2}+x\right) & \text { for } 0 \leq x \leq \frac{3}{4} \\ 1 & \text { otherwise }\end{cases}
$$

(c) $\quad F\left(\frac{1}{4}\right)=\frac{1}{3}\left(4\left(\frac{1}{4}\right)^{2}+\frac{1}{4}\right)=\frac{1}{6} \quad F\left(\frac{1}{3}\right)=\frac{1}{3}\left(4\left(\frac{1}{3}\right)^{2}+\frac{1}{3}\right)=\frac{7}{27}$

$$
P\left(\frac{1}{4} \leq X \leq \frac{1}{3}\right)=F\left(\frac{1}{3}\right)-F\left(\frac{1}{4}\right)=\frac{7}{27}-\frac{1}{6}=\frac{5}{54}
$$

(d) Let m denote the median, then $F(m)=\frac{1}{2}$

$$
\begin{aligned}
& \frac{1}{3}\left(4 m^{2}+m\right)=\frac{1}{2} \quad 8 m^{2}+2 m-3=0 \quad(4 m+3)(2 m-1)=0 \\
& m=\frac{1}{2} \quad \text { since } m \text { cannot be negative }
\end{aligned}
$$

(e)

$$
\begin{aligned}
& E(x)=\int_{0}^{\frac{3}{4}} x f(x) d x=\int_{0}^{\frac{3}{4}} x\left(\frac{8}{3} x+\frac{1}{3}\right) d x=\int_{0}^{\frac{3}{4}} \frac{8}{3} x^{2}+\frac{1}{3} x d x=\left[\frac{8}{9} x^{3}+\frac{1}{6} x^{2}\right]_{0}^{\frac{3}{4}}=\frac{15}{32} \\
& E\left(X^{2}\right)=\int_{0}^{\frac{3}{4}} x^{2} f(x) d x=\int_{0}^{\frac{3}{4}} \frac{8}{3} x^{3}+\frac{1}{3} x^{2} d x=\left[\frac{2}{3} x^{4}+\frac{1}{9} x^{3}\right]_{0}^{\frac{3}{4}}=\frac{33}{128} \\
& \operatorname{Var}(X)=E\left(X^{2}\right)-[E(X)]^{2}=\frac{33}{128}-\left(\frac{15}{32}\right)^{2}=\frac{39}{1024}
\end{aligned}
$$

The uniform distribution

Definition of the uniform distribution

Let X be a continuous random variable with probability density function
$f(x)=\frac{1}{b-a} \quad$ for $a \leq x \leq b$
$f(x)=0 \quad$ otherwise
where a and b are constants. Then X is said to follow a uniform distribution. This is denoted by $X \sim R(a, b)$. The uniform distribution may also be referred to as the rectangular distribution.

Example (2)

Prove that the function
$f(x)=\frac{1}{b-a} \quad$ for $a \leq x \leq b \quad a, b$ constants
$f(x)=0 \quad$ otherwise
defines a probability density function.

Solution
We have to show
(1) $\quad f(x) \geq 0$ for all x
(2) $\int_{-\infty}^{\infty} f(x) d x=1$.

For (1), since $a \leq x \leq b$, then $b-a>0$ and $f(x)=\frac{1}{b-a}>0$ for all x
For (2) $\int_{-\infty}^{\infty} f(x) d x=\int_{a}^{b} \frac{1}{b-a} d x=\frac{1}{b-a}[x]_{a}^{-}=\frac{b-a}{b-a}=1$

The uniform distribution derives its name from the fact that the probability density function takes the same value for all values x lying in the interval $a \leq x \leq b$.

Expectation and variance of a uniform distribution

The mean (or expectation) and variance of a uniform distribution, $X \sim R(a, b)$, are given by
$E(X)=\frac{1}{2}(a+b)$
$\operatorname{var}(X)=\frac{1}{12}(b-a)^{2}$

Example (3)

The random variable X is uniformly distributed on the interval $[a, b]$. The mean of X is 0 and the variance of X is $\frac{\pi^{2}}{3}$.
(a) Find a and b.
(b) Find the probability density function of X.
(c) Sketch the distribution of X.

Solution
(a) $E(X)=\frac{1}{2}(a+b) \quad \Rightarrow \quad \frac{1}{2}(a+b)=0 \quad \Rightarrow \quad a=-b$
$\operatorname{var}(X)=\frac{1}{12}(b-a)^{2}$
$\frac{1}{12}(b-a)^{2}=\frac{\pi^{2}}{3}$
$(b-a)^{2}=4 \pi^{2}$
$b-a=2 \pi \quad[b-a$ cannot be negative $]$
Since $a=-b$
$b=\pi \quad a=-\pi$
(b) $\quad f(x)=\frac{1}{2 \pi} \quad$ for $-\pi \leq x \leq \pi$
$f(x)=0 \quad$ otherwise
(c)

Example (4)

Let $X \sim R(a, b)$. Prove $E(X)=\frac{1}{2}(a+b)$
Solution
$E(x)=\int_{a}^{b} x\left(\frac{1}{b-a}\right) d x=\frac{1}{b-a}\left[\frac{1}{2} x^{2}\right]_{a}^{b}=\frac{1}{2(b-a)}\left(b^{2}-a^{2}\right)=\frac{1}{2(b-a)}(b-a)(b+a)=\frac{1}{2}(b+a)$

Example (5)

(a) Show that $b^{3}-a^{3}=(b-a)\left(b^{2}+a b+a^{2}\right)$
(b) Let $X \sim R(a, b)$. Prove $\operatorname{var}(X)=\frac{1}{12}(b-a)^{2}$

Solution
(a) $(b-a)\left(b^{2}+a b+a^{2}\right)=b^{3}+a b^{2}+b a^{2}-a b^{2}-a^{2} b-a^{3}=b^{3}-a^{3}$
(b) $\quad E\left(X^{2}\right)=\int_{a}^{b} x^{2}\left(\frac{1}{b-a}\right) d x$
$=\frac{1}{b-a}\left[\frac{1}{3} x^{3}\right]_{a}^{b}$
$=\frac{1}{3(b-a)}\left(b^{3}-a^{3}\right)$
$=\frac{1}{3(b-a)}(b-a)\left(b^{2}+a b+a^{2}\right) \quad[$ By part $(a)]$
$=\frac{b^{2}+a b+a^{2}}{3}$
$\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$
$=\left(\frac{b^{2}+a b+a^{2}}{3}\right)-\left(\frac{1}{2}(b+a)\right)^{2}$
$=\left(\frac{b^{2}+a b+a^{2}}{3}\right)-\left(\frac{b^{2}+2 a b+a^{2}}{4}\right)$
$=\frac{1}{12}\left\{4 b^{2}+4 a b+4 a^{2}-3 b^{2}-6 a b-3 a^{2}\right\}=\frac{1}{12}\left(b^{2}-2 a b+a^{2}\right)=\frac{1}{12}(b-a)^{2}$

Expectation and variance of a function of a uniformly distributed variable

Let us suppose that the drawing of a geometric shape depends on the random selection of some variable, such as the side of one of its lengths or an angle. Let this variable be uniformly distributed. As a result further questions about the probability of the shape having a certain area may arise. For example a square has a side $X \mathrm{~cm}$. Its area is a function of the length of the square given by $g(X)=X^{2}$. Suppose that X is a continuous random variable that is uniformly
distributed on the interval $[a, b]$. This says that the length of the side of the square is chosen at random as a number lying in the interval $[a, b]$, and that every number is equally likely. We would like to know the expected mean of the area given by $g(X)=X^{2}$. Actually, we already know this. It is $E\left(X^{2}\right)=\int_{a}^{b} x^{2}\left(\frac{1}{b-a}\right) d x$.

Example (6)

A square has side $L \mathrm{~cm}$, where L is a continuous random variable that is uniformly distributed on the interval $[2,8]$.
(a) State the probability density function of L.
(b) Find the expected area of the square.
(c) Find the probability that the area of the square is less than $45 \mathrm{~cm}^{2}$, giving your answer correct to three decimal places.

Solution

(a) $L \sim R(2,8)$

The probability density function is given by

$$
\begin{array}{ll}
f(x)=\frac{1}{8-2}=\frac{1}{6} & \text { for } 2 \leq x \leq 8 \\
f(x)=0 & \text { otherwise }
\end{array}
$$

(b) Using the result:

$$
E\left(X^{2}\right)=\int_{a}^{b} x^{2}\left(\frac{1}{b-a}\right) d x
$$

Here $a=2, b=8$

$$
\begin{aligned}
& E\left(X^{2}\right)=\int_{2}^{8} x^{2}\left(\frac{1}{6}\right) d x=\frac{1}{6}\left[\frac{1}{3} x^{3}\right]_{2}^{8}=\frac{1}{18}(512-8)=28 \mathrm{~cm}^{2} \\
& \text { (c) } P(\text { Area }<45)=P(L<3 \sqrt{5})=\int_{2}^{3 \sqrt{5}} \frac{1}{6} d x=\frac{1}{6}[x]^{3 \sqrt{5}}=\frac{1}{6}(3 \sqrt{5}-2)=0.785 \text { (3 d.p.) }
\end{aligned}
$$

In the above example we had $g(x)=x^{2}$ and $E\left(X^{2}\right)=\int_{a}^{b} g(x)\left(\frac{1}{b-a}\right) d x=\int_{a}^{b} x^{2}\left(\frac{1}{b-a}\right) d x$. We can generalise this to any function g of the random variable X. In the formula $E(X)=\int_{\text {all } x} x f(x) d x$ we are finding the integral of the product of the value of x and its probability density function $f(x)$. We can write this as
$E(X)=$ Integrate for all values[value \times probability density]
When the value is given by another function $g(x)$ then this becomes
$E(g(X))=$ Integrate for all $x[g(x) \times$ probability density $]$.
The probability density is a function $f(x)$, so we have in general $E(g(X))=\int_{\text {all } x} g(x) f(x) d x$.

Expectation of any function of a uniformly distributed random variable X
In the case of the uniform distribution the probability density function is
$f(x)=\frac{1}{b-a} \quad$ for $a \leq x \leq b$
Hence
$E(g(X))=\int_{a}^{b} g(x)\left(\frac{1}{b-a}\right) d x$

Example (7)

In the diagram the shaded area R is a segment of a sector of a circle subtending an angle θ radians at the centre. The radius of the circle is 2 cm . The angle θ is a uniformly distributed random variable defined on the interval $[0, \pi]$

(a) Write down in full the probability density function of θ.
(b) (i) Show that the area of R is given by

$$
R=2 \theta-2 \sin \theta
$$

(ii) Find R when $\theta=\frac{\pi}{4}$
(iii) Find $P\left(R \leq \frac{\pi}{2}-\sqrt{2}\right)$.
(c) Find $E(R)$ giving your answer to three decimal places.

Solution
(a) $\quad \theta \sim R(0, \pi)$

This has probability density
$f(\theta)=\frac{1}{\pi} \quad$ for $0 \leq \theta \leq \pi$
$f(\theta)=0 \quad$ otherwise
(b) (i)

$$
\begin{aligned}
R & =\operatorname{area}(\text { sector })-\text { area } \triangle(O A B) \\
& =\frac{1}{2}(2)^{2} \theta-4 \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right) \\
& =2 \theta-2 \sin \theta \quad\left[\text { since } \sin \theta \equiv 2 \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{\theta}{2}\right)\right]
\end{aligned}
$$

(ii) When $\theta=\frac{\pi}{4}, R=2 \times \frac{\pi}{4}-2 \sin \left(\frac{\pi}{4}\right)=\frac{\pi}{2}-\sqrt{2}$.
(iii) $\quad P\left(R \leq \frac{\pi}{2}-\sqrt{2}\right)=P\left(\theta \leq \frac{\pi}{4}\right)$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{4}} \frac{1}{\pi} d \theta \\
& =\frac{1}{\pi}[\theta]_{0}^{\frac{\pi}{4}} \\
& =\frac{1}{4}
\end{aligned}
$$

(c) Using the result $E(g(X))=\int_{a}^{b} g(x)\left(\frac{1}{b-a}\right) d x$ with

$$
\begin{aligned}
g(x) & =2 \theta-2 \sin \theta, a=0 \text { and } b=\pi \\
E(R) & =\frac{1}{\pi} \int_{0}^{\pi} 2 \theta-2 \sin \theta d x \\
& =\frac{1}{\pi}\left[\theta^{2}+2 \cos \theta\right]_{0}^{\pi} \\
& =\frac{1}{\pi}\left\{\left(\pi^{2}-2\right)-(2)\right\}=\pi-\frac{4}{\pi}=1.868 \text { (3 d.p.) }
\end{aligned}
$$

