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The Hungarian algorithm and the Travelling and 
Optimal Salesperson Problems 

 
 
The travelling salesperson problem 
 
Suppose we are given a weighted diagraph – that is a graph of vertices connected by 
directed edges each having a weight, which may be, for instance, the shortest distance 
between the two vertices. 
 
For example, consider this diagraph. 
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The travelling salesperson is the problem of finding a closed path of minimal weight 
that passes through every vertex exactly once.  
 
This problem is solved by using an algorithm that employs the Hungarian algorithm 
as a sub-routine. 
 
Firstly, we find the weight matrix corresponding to the weighted diagraph. For the 
above example. 
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In this matrix the i,jth  entry corresponds to the edge connecting the ith vertex to the 
jth .  For example 
 

0 5 19 11

0 7

5 0 14

9 6 0

W

 
 
   
   

4
 

 
This corresponds to the edge connecting vertex (2) to vertex (3) in that direction. You 
should refer back to the original diagraph for confirmation of the correctness of the 
entry. 
 
In this weight matrix note two points 
 
(1) Diagonal elements, for example, the edge from vertex  (1) to vertex  (1) has 0 

weight and hence a 0 entry.  This is because there is no distance between a 
vertex and itself. 

 
(2)   When an edge does not exist it is represented by a dash ().  This means the 

entry is undefined. 
 
From the weight matrix W we define another weight matrix A by replacing every 0 
and undefined entry in W by an ∞ entry in A 
 
Thus from W above we obtain  
 

5 19 11

4 7

5 0 14

9 6

A

 
   
 
    

 

 
The point of this is that when we subtract any number from ∞ we still obtain ∞; 
 ie ∞ - 6 = .  In other words the zero and undefined entries are deleted from the 
problem.  However the symbol ∞ is cumbersome and obscured the progress of the 
subsequent algorithm; hence I recommend that it be replaced by a dot (∙).  We have to 
remember that in future processes a dot (∙) remains a dot (∙) and it is not modified by 
operations on rows or columns. 
 
To begin solving the travelling salesperson problem we now apply the Hungarian 
algorithm to the matrix A.  This means (1) reduce rows; (2) reduce columns ;(3) 
augment the matrix if necessary, and repeatedly, if necessary (4) deleting zeroes; (5) 
selecting entries and referring back to the original problem. 
 
In our example  
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5 19 11

4 7

5 14

9 6


 
 

 
 

 
                                         row reductions 
 

0 14 6

0 3

0 9

5 2

 
 

 
 

                                         column reductions 
 

0 12 3

0 0

0 6

0 2


 
 

 
 

 
                                         deleting zeroes 
 

0 12 3

0 0

0 6

0 2


 
 

 
 

 
                                         Does not have n = 4 solutions; hence augment matrix 
 

0 12 3

0 0

0 6

0 2


 
 

 

-3

-3

+3  
 
                                         subtract 4 from each uncovered row 
          add 4 to each covered column. 
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0 9 0

0 0

0 3

0 2

 
 

 
 

 
                                         deleting zeroes 
 

0 9 0

0 0

0 3

0 2

 
 

 
 

 
                                          
This solution is    1  4 with weight 11 
                  2  3 with weight 4 
                  3  2 with weight 5 
       4  1 with weight 9 
 
This has total weight 11 + 4 + 5 + 9 = 29 
 
If this is a closed path connecting all the vertices then we have solved the travelling 
salesperson problem. However, there is, in general, no guarantee that the first 
application of the Hungarian algorithm will solve this problem because it may create a 
solution that involves sub tours. This is the case in our example, since we see that the 
algorithm has created a solution involving two sub tours which are not connected. 
 
 1  4  1 
and  2  3  2 
 
We must modify the matrix A so that we are forced to connect the two sub tours to 
each other. 
 
By way of passing note, the total weight of our first solution is 11+ 4 + 5 + 9 = 29. 
This provides a lower bound for the solution to travelling salesman problem – i.e. any 
solution will have total weight   29. 
 
The first use of the algorithm has divided the set of vertices into two subsets {1,4 } 
 and {2,3}.  It has partitioned the set into two sub-sets. 
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We take the smallest of these sets and for each vertex in this set create modified 
weight matrices from the original weight matrix by deleting the entry from that vertex 
from successively each of the other vertices in the set. We delete only one entry at a 
time. 
 
For example, we have sets {1,4} and {2,3}which both have the  same size (order), 
which is two. Either can be selected , so we choose the set {1,4}.  This contains the 
vertices 1 and 4. Taking the vertex 1, in the modified weight matrix A we therefore 
(1) delete the 1,4 entry to obtain another matrix ; (2) we separately delete the 4,1 entry 
to obtain a second  matrix.  
 
We repeat the process for the vertex 4; however, in this case, deleting 4,1 and deleting 
1,4 results in the same two modified matrices. Thus in this example , we arrive at two 
further modified matrices.     
 

. 5 19 11

. . 4 7

. 5 . 14

9 . 6 .

. 5 19 .

. . 4 7

. 5 . 14

9 . 6 .

. 5 19 11

. . 4 7

. 5 . 14

. . 6 .
 

 
We must now apply the Hungarian algorithm to each of the modified matrices A1 and 
A2 .  The modified matrices are called branching matrices.  For each branching matrix 
the process of applying the Hungarian algorithm and possibly further modifying the 
matrix to obtain further branching matrices must be applied until either a feasible 
solution to the travelling salesperson problem is obtained or every possible avenue is 
exhausted without solution.  At this point the best of the feasible solutions is selected, 
and that will be the solution to the travelling salesperson problem! 
 
In our example we will start with the matrix A2 . Recall that the dots are shorthand for 
 signs , so the branching matrix A2 is really. 
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5 19 11

. 4 7

5 14

6


 
 
  

    
 
Looking at the first column, we see that it has only  entries. Hence no amount of 
row or column operations will ever introduce a zero into this matrix. Therefore there 
is no solution to the travelling salesperson problem involving this branching matrix. 
 
We now turn to the branching matrix A1 and apply the Hungarian algorithm to it. 
 

. 5 19 .

. . 4 7

. 5 . 14

9 . 6 .
 

 
                                              row reduction 
 

 

. 0 9 .

. . 0 3

. 0 . 9

3 . 0 .
 

 
                        column reduction 
 

 

. 0 9 .

. . 0 0

. 0 . 6

0 . 0 .
 

 
                                              deleting zeroes 
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. 0 9 .

. . 0 0

. 0 . 6

0 . 0 .
 

 
                                              Only n = 3 solutions  
                                                augment the matrix 
 

. 0 9 .

. . 0 0

. 0 . 6

0 . 0 .

-6

-6

+6  
 
                                              -6 from each uncovered row  
               +6 to each covered column 

. 0 3 .

. . 0 0

. 0 . 0

0 . 0 .
 

 
                                                 delete zeroes 
 

. 0 3 .

. . 0 0

. 0 . 0

0 . 0 .
 

 
                          
 
Solution             1   2         5 
         2   3         4 
         3   4    14 
         4   1     9 
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Total weight is 5 + 4 + 14 + 9 = 32 
 
This defines a closed path through each vertex and is, therefore, a feasible solution to 
the travelling salesperson problem. Since we have exhausted the feasible solutions 
this is the only solution and hence the solution to the original problem. 
 
Some further terminology. 
 
A closed path that passes through every vertex of a diagraph exactly once is called a 
Hamiltonian cycle. 
 
The travelling salesperson problem is, therefore, also called the optimal Hamiltonian 
problem – The problem of finding a Hamiltonian cycle of minimum weight. 
 
A matrix will be called a Hamiltonian matrix if a single application of the Hungarian 
algorithm yields a Hamiltonian cycle (that is, a feasible solution to the travelling 
salesperson problem; meaning a possible solution without subtours.)  
 
An algorithm for the travelling salesperson problem follows on the next page. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Algorithm for the travelling salesperson problem. 
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Optimal salesperson problem 
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Whereas the travelling salesperson problem is the problem of finding a closed path of 
minimal weight that passes through every vertex exactly once, the optimal salesperson 
is the problem of finding a closed path of minimal weight that passes through every 
vertex at least once. 
 
To solve the optimal salesperson problem, solve the travelling salesperson problem. 
Then examine each connection between vertices in the optimal solution to the 
travelling salesperson problem. If there is a shorter path between two vertices than the 
direct connection between them, replace that direction connection by the shortest such 
alternative path. When all connections between vertices have been examined you will 
have the solution to the optimal salesperson problem. 
 
For example, the solution to the travelling salesperson problem for the matrix 
 

5 9 11

16 4 7

21 5 12

9 11 6







 

 
is the path  1  3  2  4  1 with weight 9 + 5 + 7 + 9 = 30. But there is a shorter 
path from 3 to 4, which is 3  2  4. Therefore a solution to the optimal salesperson 
problem is 1  2  3  2  4  1. 
 
 
 


