Trigonometric Functions

Prerequisites

The essential background for this topic is (1) familiarity with trigonometric ratios, (2) working knowledge of the concept of a function.

(1) Trigonometric ratios

The following diagram represents a right-angled triangle.

The side next to the angle x is called the *adjacent* side, abbreviated to *adj*; the side opposite x is called the *opposite* side (*opp*); and the longest side that is opposite the right angle is called the *hypotenuse* (*hyp*). The trigonometric ratios are

$$\sin \theta = \frac{opp}{hyp}$$
 $\cos \theta = \frac{adj}{hyp}$ $\tan \theta = \frac{opp}{adj}$

where sin, cos and tan are abbreviations for sine, cosine and tangent respectively.

(2) Functions

A function is a rule that takes you from one number to another. Other equivalent terms for a function are *map* or *mapping*. There are various ways of writing functions in mathematics. For example, the *mapping diagram*

$$f: x \to y$$

describes the function f as a rule (or mapping) of one number x to another number y. We say "f maps x to y". This is also written

y = f(x)

We say "*y* is *f* of *x*" – *y* is the *value* of the function *f* when *f* takes the *argument x*.

Example (1)

Let *f* be the function $f(x) = 2x^3 + 3$. Find f(-2).

Solution

 $f(-2) = 2 \times (-2)^3 + 3 = -13$ We can also write this using a mapping diagram as $f: -2 \rightarrow -13$

Trigonometric functions

We will extend the concept of a trigonometric ratio and turn it into a function. The trigonometric ratios are defined for the following triangle.

Suppose we transpose this diagram onto a set of coordinate axes, and at the same time, choose a hypotenuse of length 1 unit.

We have replaced the terms "adjacent" and "opposite" by variables *x* and *y*. We now inscribe the figure inside a circle.

The diagram shows that as the angle θ varies the lengths *x* and *y* also vary. This gives

$$\cos\theta = \frac{adj}{hyp} = \frac{x}{1}$$
 $\sin\theta = \frac{opp}{hyp} = \frac{y}{1}$

Hence

 $x = \cos\theta \qquad \qquad y = \sin\theta$

The "lengths" *x* and *y* may be thought of as the images of the functions

$$f_x(\theta) = \cos\theta$$
 $f_y(\theta) = \sin\theta$

respectively. These define the *trigonometric functions*, $\cos\theta$ and $\sin\theta$. They are mappings from the angle to the respective trigonometric ratio associated with that angle. Now consider what happens to $x = \cos\theta$ as the angle θ increases above 90°.

As it increases the angle θ passes through four *quadrants* of the diagram.

In the second quadrant the value of *x* becomes negative. The size of *x* is equal to the cosine of the angle $180 - \theta$ as this diagram shows

So, when $90 < \theta \le 180$ we have $\cos \theta = -\cos(180 - \theta)$. Letting $x = \cos \theta$ in the same way as θ varies throughout 360° we can obtain the following table of values.

X	0	30°	45°	60°	90°	120°	135°	150°	180°
cos x	1	0.87	0.71	0.5	0	-0.5	-0.71	-0.87	-1

X	210°	225°	240°	270°	300°	315°	330°	360°
COS X	-0.87	-0.71	-0.5	0	0.5	0.71	0.87	1

Example (2)

From the above table, plot a graph of $x = \cos \theta$ as a function of θ .

Solution

In this graph the value of $\cos\theta$ is defined for $0 < \theta \le 180$; but why should we limit the values of $\cos\theta$ to this? If we carry on rotating the angle past 360° then we can continue to define $\cos\theta$ as the length $x = \cos\theta$ in the diagram

By reversing the direction in which the angle θ is measured, we can extend the graph to include negative values of θ .

By convention a positive value of θ is taken in an *anti-clockwise* direction from the positive *x*-axis; a negative value of θ is taken in a *clockwise* direction from the positive *x*-axis.

Thus, we obtain a graph of $x = \cos \theta$ for all values of θ .

This graph is *periodic*. This means that after every period of 360° the graph repeats itself. $\cos\theta = \cos(\theta + n360^\circ)$

where *n* is an integer, positive or negative. By similar arguments we can construct functions for $\sin \theta : \theta \rightarrow \sin \theta$

 $\tan\theta:\theta\to\tan\theta.$

Graphs of trigonometric functions

You should be able to sketch the graphs of $\sin \theta$, $\cos \theta$ and $\tan \theta$ from memory.

(1) cosine

 $\cos\theta$: $\theta \rightarrow \cos\theta$ is a *symmetric* or *even function*. This means that the graph is symmetric about the *y*-axis.

We also have the relationship

 $\cos(-\theta) = \cos(\theta)$

(2) sine

 $\sin\theta:\theta \to \sin\theta$

This shows the graph of $y = \sin \theta$. The graph illustrates that $\sin \theta$ is periodic with period 360°. The graph also shows that

 $\sin\theta = -\sin\left(-\theta\right)$

This is a sort of near symmetry. If the negative part of the graph were reflected in the θ axis (the horizontal axis) the two graphs would become symmetric about the *y*-axis.

For this reason we say that $y = \sin \theta$ is an *anti-symmetric* function. We also call it an *odd* function, in contrast to functions that are purely symmetric or "even" functions.

(3) tangent

Another anti-symmetric, or odd, function is $\tan \theta : \theta \rightarrow \tan \theta$

The graph would be symmetric if the negative part of it were reflected in the θ -axis. We also have

 $\tan\left(-\theta\right) = -\tan\left(\theta\right)$

The graph illustrates that $tan(\theta)$ is a periodic function with period 180°.

Example (3)

You are given $\sin 40^\circ = 0.643$ (3.s.f.). Find

(a) $\sin 140^{\circ}$ (b) $\sin 220^{\circ}$ (c) $\sin (-40^{\circ})$ (d) $\sin 400^{\circ}$

To solve these questions you use your knowledge of how the sign of $\sin \theta$ changes with θ and the fact that $\sin \theta$ is a periodic function, with period 360°

Solution

(a) $\sin 140^\circ$ is equal in size to $\sin 40^\circ$ and is positive.

(*b*) $220^\circ = 180^\circ + 40^\circ$

In the third quadrant sine takes a negative sign. Thus $\sin 220^\circ = -\sin 40^\circ = -0.643$ (3.s.f.)

- (c) $\sin(-40^\circ) = -\sin 40^\circ = -0.643$
- (*d*) $\sin \theta$ is periodic with period 360°. $\sin 400^\circ = \sin 40^\circ = 0.643$

