Truncation Errors

Errors in the trapezium rule

The trapezium rule estimates the area under the curve $f(x)$ by a series of trapezia, each of width h.

We wish to find a bound for the error created by using this approximation. Firstly, consider a single trapezium.

Let the true area under the curve be I. Then
$I=\int_{x_{0}}^{x_{0}+h} f(x) \delta x$

The area would be the same if the whole function were shifted to the left by $x_{0}-$ as shown here

The trapezium rule for this area gives

$$
A=\frac{h}{2}\{f(0)+f(h)\}
$$

But the real value is
$I=\int_{0}^{h} f(x) \delta x$
Having made this translation (the shift to the left by x_{0}) we can use the Taylor expansion for $f(x)$ about zero.

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2} f^{\prime \prime}(0)}{2!}+\ldots \ldots \ldots
$$

on substituting into (1)

$$
\begin{aligned}
I=\int_{0}^{h}(& \left.f(0)+x f^{\prime}(0)+\frac{x^{2} f^{\prime \prime}(0)}{2!}+\ldots . .\right) \delta x \\
& =\left[x f(0)+\frac{x^{2}}{2} f^{\prime}(0)+\frac{x^{3} f^{\prime \prime}(0)}{3!}+\ldots .\right] \\
& =h f(0)+\frac{h^{2}}{2} f^{\prime}(0)+\frac{1}{6} h^{3} f^{\prime \prime}(0)+\ldots \\
& =h f(0)+\frac{1}{2} h^{2} f^{\prime}(0)+\frac{1}{6} h^{3} f^{\prime \prime}(0)+\ldots
\end{aligned}
$$

The error in using the trapezium rule to this interval is

$$
\begin{aligned}
\text { error } & =I-A \\
& =\left\{h f(0)+\frac{1}{2} h^{2} f^{\prime}(0)+\frac{1}{6} h^{3} f^{\prime \prime}(0)+\ldots .\right\}-\frac{h}{2}\{f(0)+f(h)\}
\end{aligned}
$$

Now the expression $f(h)$ can also be expanded as a Taylor series, giving
$f(h)=f(0)+h f^{\prime}(0)+\frac{h}{2} f^{\prime \prime}(0)+\ldots$.
which on substitution into (2) gives

$$
\begin{aligned}
\text { error } & =I-A \\
& =\left\{h f(0)+\frac{1}{2} h^{2} f^{\prime}(0)+\frac{1}{6} h^{3} f^{\prime \prime}(0)+\ldots .\right\}-\frac{h}{2}\left(f(0)+f(0)+h f^{\prime}(0)+\frac{h}{2} f^{\prime \prime}(0)+\ldots .\right) \\
& =\left\{h f(0)+\frac{1}{2} h^{2} f^{\prime}(0)+\frac{1}{6} h^{3} f^{\prime \prime}(0)+\ldots .\right\}-\left\{h f(0)+\frac{1}{2} h^{2} f^{\prime}(0)+\frac{1}{4} h^{3} f^{\prime \prime}(0)++\ldots .\right\} \\
& =\left(\frac{1}{6}-\frac{1}{4}\right) h^{3} f^{\prime \prime}(0)+\ldots . \\
& =-\frac{1}{12} h^{3} f^{\prime \prime}(0)+\text { higher degree terms }
\end{aligned}
$$

So the principal error, called the truncation error, by using the trapezium rule to estimate a single strip is of the magnitude
$\frac{1}{12} h^{3} f^{\prime \prime}(0)$
If there are n strips then the principle error will be the sum of the errors of each strip.

Suppose $M=$ the maximum value of $\left|f^{\prime}(x)\right|$ in the region over which the approximation is being taken.

Then \mid error $\left\lvert\, \approx n \times \frac{h^{3}}{12} \times M\right.$
If the interval is from a to b and the approximation involves taking n strips, of width h, then

$$
n=\frac{b-a}{h}
$$

So the principal error in the trapezium rule can also be written

$$
\begin{aligned}
\mid \text { error } \mid & =\left(\frac{b-a}{h}\right) \frac{h^{3}}{12} \times M \\
& =(b-a) \frac{h^{2}}{12} \times M
\end{aligned}
$$

Error in Simpson's rule

We begin by considering the approximation to the area under a function, $y=f(x)$ when Simpson's rule is used with just to strips. We will also picture the function as centered about the origin and the strips will have width h.

The integral is

$$
I=\int_{-h}^{h} f(x) \delta x
$$

We will substitute the Taylor polynomial for $f(x)$ about zero to obtain

$$
\begin{aligned}
I=\int_{-h}^{h}\{ & \left.f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\frac{x^{4}}{4!} f^{\prime \prime \prime}(0)+\ldots . .\right\} \delta x \\
& =\left[x f(0)+\frac{x^{2}}{2} f^{\prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime}(0)+\frac{x^{4}}{4!} f^{\prime \prime \prime}(0)+\frac{x^{5}}{5!} f^{\prime \prime \prime}(0)+\ldots . .\right]_{-h}^{h} \\
& =\left(h f(0)+\frac{h^{2}}{2} f^{\prime}(0)+\frac{h^{3}}{3!} f^{\prime \prime}(0)+\frac{h^{4}}{4!} f^{\prime \prime \prime}(0)+\frac{h^{5}}{5!} f^{\prime \prime \prime}(0)+\ldots . .\right) \\
& \quad-\left(-h f(0)+\frac{h^{2}}{2} f^{\prime}(0)-\frac{h^{3}}{3!} f^{\prime \prime}(0)+\frac{h^{4}}{4!} f^{\prime \prime \prime}(0)-\frac{h^{5}}{5!} f^{\prime \prime \prime \prime \prime}(0)+\ldots . .\right) \\
& =2 h f(0)+2 \frac{h^{5}}{5!} f^{\prime \prime \prime}(0)+\ldots \ldots \\
& =2 h f(0)+\frac{h^{3}}{3} f^{\prime \prime}(0)+\frac{h^{5}}{60} f^{\prime \prime \prime}(0)+\ldots .
\end{aligned}
$$

Using Simpson's rule we can approximate the area under $f(x)$ by

$$
A=\frac{h}{3}(f(-h)+4 f(0)+f(h))
$$

We substitute for $f(-h)$ and $f(h)$ in this expression using Taylor polynomials

$$
\begin{aligned}
A=\frac{h}{3}\{ & \left(f(0)-h f^{\prime}(0)\right. \\
& \left.+\frac{h^{2}}{2!} f^{\prime \prime}(0)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(0)+\frac{h^{4}}{4!} f^{\prime \prime \prime}(0)+\ldots .\right) \\
& \left.+4 f(0)+\left(f(0)+h f^{\prime}(0)+h f^{\prime \prime}(0)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(0)+\frac{h^{4}}{4!} f^{\prime \prime \prime}(0)+\ldots .\right)\right\} \\
= & \frac{h}{3}\left\{6 f(0)+2 \frac{h^{2}}{2!} f^{\prime \prime}(0)+2 \frac{h^{3}}{3!} f^{\prime \prime \prime}(0)+\frac{h^{4}}{4!} f^{\prime \prime \prime}(0)+\ldots .\right\} \\
= & 2 h f(0)+\frac{h^{3}}{3} f^{\prime \prime}(0)+\frac{h^{5}}{36} f^{\prime \prime \prime}(0)+\ldots .
\end{aligned}
$$

Then the principle error in the use of the Simpson's rule is
$I-A=\left(\frac{1}{60}-\frac{1}{36}\right) \frac{h^{5}}{36} f^{\prime \prime \prime}(0)+$ higher degree terms $=-\frac{1}{90} h^{5} f^{\prime \prime \prime}(0)+$ higher terms

This because the first two terms in the expansion of $I+A$ are the same. This means that over any pair of strips the use of Simpson's rule gives a truncation error of
$\frac{1}{90} h^{5} f^{\prime \prime \prime \prime}(0)$

If we approximate over $2 n$ strips we apply the rule n times; this leads to the size of the principal error term being
error $\approx n \times \frac{h^{5}}{90} \times M$
where M is the maximum value of $f^{\prime \prime \prime \prime}(x)$ in the interval. That is M is a number such that for all x in the interval (a, b)
$\left|f^{\prime \prime \prime}(x)\right| \leq M$
If we are finding the area between the limits a and b then
$h=\frac{b-a}{2 n}$
or $n=\frac{b-a}{2 h}$
Hence

$$
\begin{aligned}
\text { error } & \approx\left(\frac{b-a}{2 h}\right) \times \frac{h^{5}}{90} \times M \\
& =(b-a) \times \frac{h^{4}}{180} \times M
\end{aligned}
$$

This means that doubling the number of strips will reduce the error by a factor of 16 when using Simpson's Rule.

