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Vector calculus 
 
 
Scalar Field 
 

   For example, let ,  denote a position in two-dimensional space and let ,

represent the pressure at that point.

x y P x y
 

 
The variable P is one-dimensional quantity and is a function of the two variables x and y.  
That is 
 

 ,P P x y  

 
It is an example of a scalar field. Since it is a function of two variables, it is an example 
of a two dimensional scalar field. 
 
A three dimensional scalar field would be a function of three variables and an n 
dimensional scalar field is a function of n variables. 
 
In general a n-dimensional scalar field is a function. 
 

 1 2 1 2, ,.. ( , ... )

n

n nx x x x x x



 
 

 
 

 
 
Contour curves 
 
Suppose we have a two-dimensional scalar field  ( , ). Then a curve will

be defined by each specific value that  ( , ) can take. The curve  ( , )   

is called a contour curve of the scalar field.

x y

x y x y k


    

 
Note that the contour curves of a temperature field are called isotherms and the contour 
curves of a pressure field are called isobars. 
 

Example 
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2

2 2

Let

 ( , )

be a scalar field

x y x y



 

 
 

 

2 2

Sketch the contours given by

( , ) 1

( , ) 2

( , ) 3

Solution

We have ( , ) 1

that is 1

This is the equation of the circle with centre the origin 4 radius1. Similary

( , ) 2  is a circle with radiu

x y

x y

x y

x y

x y

x y















 

 s 2  and ( , ) 3 is a circle with radius 3.x y 

 

 

x

y

2 31

 
 
A contour map is a map of a surface given by its contours. 
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If we make a contour map by taking a constant interval between each contour; e.g. 
 

( , ) 10

( , ) 20

( , ) 30

x y

x y

x y









 

 
where the difference between successive contours is always 10 units, then the rate of 
increase or decrease of a scalar field is related to the closeness of the contour curves. The 
closer the contour curves are together the faster the scalar field is changing. 
 

2 2 2

2

The idea of a contour curve can be generalised to 3-dimensions.

( , , )

This will give pictorially a series of contour surfaces. For example,

if ( , , )  then the contour surfaces given by

x y z k

x y z x y z

x







  

 2 2

2

 for different values of k are a series of rested spheres.

A contour surface can be defined for a -dimensional scalar field

( , ... )

but it is not possible to visualise this in 3-dimensional 

n

y z k

n

x x x

 

space.

 

 
 
Vector Field 
 
A vector field is a mapping (function) from one vector space to another. 
 
For example, suppose we represent an ocean as a two-dimensional disk and the direction 
and magnitude of the current on the surface of the ocean by a two dimensional vector, 
then the function that assigns to each point on the surface of the ocean its current vector 
is a vector field. 
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x

y

 
 
This is the vector field 
 

2 2

1 2

1 2

( , ) ( , ( , ), ( , ))

The functions , and  are the components of the vector field and are themselves

two-dimensional scalar fields.

x y x y x y 

 




 

 

 

x

y

1(x,y)

2(x,y)(x,y)

 
 
We can represent the rector to which the point  ,x y  is mapped by a row or column 

matrix, or by using ,i j  notation. 
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      
 

   1

2 2

2

,
, , , , , , ,

,

x y
x y x y x y x y

x y


   



 
     

 
r i j  

1

2
r

i

j

 
 
 
Vector field lines 

A vector field line is a continuous curve such that any point on the curve the tangent to 
the curve is parallel to the direction of the vector field at that point. 

For example, vector field lines for a bar magnet could be represented thus: - 

 

N S

 

 

The tangent at any point on one of these field lines points in the direction of the vector 
field there. 

 

N S
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Differentiation of scalar and vector products. 

 
Suppose 1 2 3f f f  F i j k  is a vector field 

 
The functions 1, 2 3,f f f  are its Cartesian coordinates this function. Then the vector field 

can be differentiated according to the obvious rule. 
 

31 1 dtdf dfd

dt dt dt dt
  

F
i j k  

 
Then differentiation of scalar and vector (cross) products of vectors follows the normal 
product (Leibniz) rule. 
 

 

 

d d d

dt dt dt

d d d

dt dt dt

  

    

F G
F G G F

F G
F G G F

 

 
 
We will prove the result for the cross product.  That is  
 

   *
d d d

dt dt dt
    

F G
F G G F  

 
 Let  
 

 

1 2 3 1 2  

then the left-hand-side of *  is

f f f and g g g      F i j k G i j k
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 

      

         

 

1 2 3

1 2 3

2 3 3 1 1 2

2 3 3 1 1 2

2 3 3 2 3 1 1 3 1 2 2 1

2 3 3 2 3 1 1 3 1 2 2 1

2 3 2 3 3 2 3 2 3 1 3 1 1

LHS
d

dt

d
f f f

dt
g g g

f f f f f f

g g g g g g

d
f g f g f g f g f g f g

dt
d d d d d

f g f g f g f g f g f g
dt dt dt dt dt

f g f g f g f g f g f g f

 



  

     

               
     

           

F G

i j k

i j

i j k

i j k

i  
 

3 1 3

1 2 1 2 2 1 2 1

g f g

f g f g f g f g

 

      

j

k

 

 
However the right-hand side of (*) is 
 

       

 

1 2 3 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

1 2 3
1 2 3

2 3 3 1 1 2
2 3 3 1 1 2

2 3 3 1 2 3 3 11 2 1 2

2 3 3 2 3 1

RHS
d d

dt dt

f f f g g g f f f g g g

f f f f f f

g g g g g g

f f f f f ff f f f f f

g g g g g g g gg g g g

f g f g f g

   

                

   

  

     
     

     

    

F G
G F

i j k i j k i j k i j k

i j k i j k

i j k i j k

i    
     

1 3 1 2 2 1

2 3 3 2 3 1 1 3 1 2 2 1

LHS

f g f g f g

f g f g f g f g f g f g

   

          



j k

i j k
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The gradient of a scalar field 

Consider a two- dimensional scalar field        =  (x ,y) 

We will define a vector field called the gradient of the scalar field   by, 

grad
x

x y
y


 



 
      
   

  

i j  

 
Example 

If  ln 3x y    find grad   

Evaluate grad   at  1,1  

 
Solution 

   

 

ln 3 ln 3

1 3

3 3

1 3
1,1 4 4

grad x y x y
x y

x y x y

grad





 
   
 

   
        

 

i j

i j

i j

 

We will now show that the direction of grad  at a point is perpendicular to contour curve 
passing through that point – that is, it points in the direction of the normal to that contour. 
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tangent to the contour curve

grad  is normal to the contour curve

contour curve grad  =  k

x

y

 

 
Proof 

We have  ,x y k   

as the equation of a contour curve. 

x

y

r

x(t), y(t)

i

j

 

Let     ,x t y tr  be a parameterisation of this contour curve. 

Then a vector tangent to this contour curve will be 

x y

t t t

  
 

  
r

i j  
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x

y

r

d

dt

r

d

dt

r
d

dt

y

d

dt

x

(x(t), y(t))

 

Along this curve       , ,x y x t y t    where k is a constant. 

Hence, differentiating with respect to t, 

  0
t





 

However, since   is a function of x  and y  and these are regarded as functions of t , we 
can apply the chain rule to differentiate  . 

    
   

,x y
t

x y

t t

x y

x t y t

 

 

 


  


 

 
 

                

i j

i j

 

But here
x x

  


 
 is the partial denvative of  with respect to x , and likewise 

y y

  


 
 

is the partial denvative of  with respect to y. 

So, 
x y

t x t y t

                    
i j
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Since 0
t





, this means 0

x y

x t y t

                
i j  

Now the expression 
x y

x t y t

                
i j  is the scalar (dot) product of the two  

vectors , , ,
x y

x y t t

      
        

. 

That is , ,
x y

x y t y

       
         

,
x y

x t y t

     
       

 

Hence the dot product of these two vectors is zero. 

, , 0
x y

x y t t

               
 

Hence the vector 
x y

   
   

is perpendicular to the vector 

Since the vector ,
x y

t t

  
   

 is tangent to the contour curve, the vector ,grad
x y

 
  

    
 

is normal to it 

grad ,
x y

 


  
    

,
x y

t t

  
   

 

In three-dimensional space a scalar field is represented by the field function  , ,x y z .  

Its gradient is 
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grad
x dy z

     
  
 

i j k  

Example 

The gravitational potential at a point  , ,x y z  of a gravitational field is given by 

 
2 2 2

, ,
c

U x y z
x y z


 

 

where c  is a constant.  For example, the gravitational field surrounding the sun 

r
(x,y,z)

SUN

 

The gravitational potential is inversely proportional to the distance of the point 
from the centre of the sun 

U

r

 

Find gradU  and show that this points in the direction of the centre of the 
gravitational field. 
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 

 

 

 

     
 

 

1
2 2 2 2

2 2 2

3
2 2 2 2

3
2 2 2 2

3
2 2 2 2

3
2 2 2 2

3 3 3
2 2 2 2 2 2 2 2 22 2 2

3
2 2 2 2

( ) 2
2

, ,

1
, , .

So Grad U points in the direction

C
U C x y z

x y z

U C
x y z

x x y z

U y

y x y z

U z

z x y z

x y z
GradU

x y z x y z x y z

x y z
x y z





   
 

 
    

  

 


  

 


  

 
             

 
 

 

 

  , , .

That is the direction .

Hence it points towards the centre of the gravitational field.

We will now show that the magnitude of grade  at the point , ,  gives the magnitude

of the maximum 

x y z

i j k

x y z



  

rate of change of  at that point.
 

  Proof in this text is murky  

The Vector Operator 
 
Instead of grad  we use the expression . The symbol  is pronounced 'del' or 'nabla'.

It stands for

 
x

And if signifies the operation of finding the first - order partial derivatives of  and the 

i

 



 






formation of the vector field
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 =  

 is not itself a vector, but by applying  to a scalar field  a vector field is defined; hence 

it is called a differential vector operator.

i j k
x y z

  



  
  

  

 

 

 
 


