Wilcoxon signed rank test on a population median

This is a non-parametric test to test a hypothesis about a population median. As with so many of these non-parametric tests it is best introduced through a worked example.

Example 1

In a Spanish town each year there is an annual bull festival. Young men run from one end of the town to another being chased by a bull. The young men regularly train and a scientifically minded elderly lady has observed that the median time for running across town when not being chased by a bull is 12 minutes. The same lady observed the bull festival from the same distance and noted the following times for running across town from a random sample of eight men:

$\begin{array}{llllllll}10.3 & 9.6 & 8.4 & 14.1 & 12.3 & 7.2 & 6.9 & 9.8\end{array}$

By means of a single-sample Wilcoxon signed rank test, test the hypothesis that the median time for running across town is 12 minutes regardless of whether you are chased by a bull or not. Why might a t-test for the mean running time not be appropriate?

The hypotheses are:
H_{0} : median time $=12$
H_{1} : median time <12
This is a one-tailed test, $\alpha=0.05$.
We begin by calculating the differences of the sample values from the expected median; we then rank the absolute values of the differences according to the magnitudes - from smallest to largest. We calculate the signed rank.

n	X	$d=X-12$	rank	sign	signed rank
1	10.3	-1.7	2	-	-2
2	9.6	-2.4	5	-	-5
3	8.4	-3.6	6	-	-6
4	14.1	2.1	3	+	+3
5	12.3	0.3	1	+	+1
6	7.2	-4.8	7	-	-7
7	6.9	-5.1	8	-	-8
8	9.8	-2.2	4	-	-4

Let T_{+}denote the sum of the ranks of the positive differences, and T_{-}denote the sum of the negative differences.

Then
$T_{+}=3+1=4$
$\frac{n \cdot(n+1)}{2}-T_{+}=\frac{1}{2} \cdot 8 \cdot 9-4=32$

The test statistic can be either T_{+}or T_{-}. If T_{+}is the small (and T_{-}is large) then the positive differences are small compared with the negatives ones. This is pushing us towards acceptance of the alternative hypothesis
$H_{1}: \quad$ median time <12.

Thus, in this case the critical region is

$$
T_{+} \leq T_{\text {critical }} \quad\left(\text { or } T_{-} \geq \frac{n \cdot(n+1)}{2}-T_{\text {critical }}\right)
$$

where the critical value is drawn from the distribution of T_{+}. This is given as Wilcoxon's T. Tables give critical values as a function of the sample size, the level of significance and whether the test is one- or two-tailed.
Here $T_{\text {critical }}=5 \quad(n=8, \alpha=0.05$, one-tailed $)$.
Since $T_{+}<T_{\text {critical }} \quad\left(\right.$ or $\left.\quad T_{-}>\frac{n \cdot(n+1)}{2}-T_{\text {critcal }}\right)$
we reject H_{0} and accept H_{1}.
Being chased by a bull really does improve your ability to run.

The t-test in situation like the one here night not be appropriate because we can not guarantee the normality of the underlying population. The Wilcoxon signed rank test needs a much weaker assumption, namely, that the underlying population has a continuous probability distribution.

The next example shows how to deal with a two-sided alternative hypothesis.

Example 2

The median of the average monthly sales of an agent in an insurance company is 23 . In a certain town the director of the local office of the insurance company recorded the average monthly sales of 10 randomly chosen agents.

The results were

$$
\begin{array}{llllllllll}
30.3 & 17.3 & 33.9 & 37.0 & 20.6 & 35.9 & 20.1 & 29.7 & 24.7 & 26.8 .
\end{array}
$$

Copyright © Blacksacademy - September 2001

By means of a single-sample Wilcoxon signed rank test, test whether or not the median of the average monthly sales in this particular town differs from 23. Use the 5% level of significance.

Solution

The hypotheses are
H_{0} : median $=23$
H_{1} : median $\neq 23$.

This is a two-tailed test, $\alpha=0.05$.

Agent	X	$d=X-23$	rank	sign	signed rank
1	30.3	7.3	8	+	+3
2	17.3	-5.7	6	-	-6
3	33.9	10.9	9	+	+9
4	37.0	4.0	5	+	+4
5	20.6	-2.4	2	-	-2
6	35.9	12.9	10	+	+12
7	20.1	-2.9	3	-	-3
8	29.7	6.7	7	+	+7
9	24.7	1.7	1	+	+1
10	26.8	3.8	4	+	+4

$T_{-}=6+2+3=11$
$T_{+}=\frac{1}{2} \cdot 10 \cdot 11-11=44$.
As in the single-sample case, the test statistic can be either T_{+}or T_{-}. In the case of the twotailed test, both the large and small values of T_{+}(or T_{-}) should make us suspicious about the validity of the null hypothesis. The critical region is this case has the form
$T_{+} \leq T_{\text {critical }} \quad\left(\right.$ or $\left.T_{-} \geq \frac{n \cdot(n+1)}{2}-T_{\text {critical }}\right)$
where T is either T_{+}or T_{-}.

Here $T_{\text {critical }}=8 \quad(n=10, \alpha=0.05$, two-tailed $)$.
Since $T_{-}>T_{\text {critical }} \quad\left(\right.$ or $\left.\quad T_{+}<\frac{n \cdot(n+1)}{2}-T_{\text {critcal }}\right)$
We accept H_{0} and reject H_{1}.
No evidence that the median of the average monthly sales differs from 23.

Copyright © Blacksacademy - September 2001

