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Work 
 
 
 
 
Prerequisites 
 

You should be familiar already with Newton’s second law, with friction and with problems 

involving the resolution of forces horizontally and vertically. 

 

 Example (1) 

20 kg 30

50 N

 

 

The diagram shows a block of mass 20 kg in contact with a horizontal surface.  The block 

is initially at rest when at time  0t  it is pulled by a constant force of 50 N by means of 

tension in a rope attached to the block making an angle of 30 to the horizontal.  This 

constant force is maintained for 10 seconds, after which the force is removed.  The 

coefficient of friction between the block and the surface is 0.2.  Assume that the entire 

under surface remains in contact with the block, so that the contact force between the 

block and the surface also remains constant. 

 (a) Find the resultant force acting on the block in a horizontal direction. 

(b) Find the acceleration of the block during the 10 seconds that it is subject to the 

pulling force of 50 N. 

(b) Find the distance travelled by the block during the first 10 seconds of its motion. 

 (d) Find also the velocity of the block at 10 seconds. 

(e) Find the distance travelled by the block once the pulling force of 50 N is removed. 

 

Solution 

(a) There are four forces acting on the block during the period when it is subject to 

the force of 50 N. 
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20 kg 30

50 N

W = 20  9.8 = 196 N

N

F N= 0.2 

 

 

These are the 45 N force acting at an angle of 30 degrees to the horizontal, the weight of 

the block     20 9.8 196NW mg , the normal reaction  N  and the friction 

   0.2F N N .  Let the resultant horizontal force be R.   

(a) Resolving horizontally and vertically 

      

    

50sin30

20 9.8 50 0.5 171

N W

N
 

  

 

 

   

   





50cos30

3
50 0.2 171

2
9.101...

9.10 N 3 s.f.

R F

 

 (b) Applying Newton’s second law 

    29.101...
0.455 ms 3 s.f.

20

R
a

m
 

(c) This requires one of the equations of uniform acceleration.  The initial velocity is 

 0u .  Hence 

          
221 1

0.455... 10 22.8 m 3 s.f.
2 2

s ut at   

 (d) This is another equation of uniform acceleration.  Again  0u . 

       10.455... 10 4.55 msv u at  

(e) Once the 50 N force is removed the block has an initial velocity of  14.55 msu .  

It is subject to a retarding force of friction.  This is given by 

        0.2 20 9.8 39.2 NF N mg  

  The deceleration is  

    239.2
1.96 ms

20
a  

  The final velocity is  0v .  We require another equation of uniform acceleration. 
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   
   

 

  

  


2 2

2

2

2

0 4.55... 2 1.96

4.55...
5.28... 5.28 m 3 s.f.

2 1.96

v u as

s

s

 

 

This example revises the essential background concepts for this chapter and leads naturally to the 

topic of work.   

 

 

 

Work 
 
Let us continue with example (1).  Imagine that you were at the end of the rope pulling the block.  

How would you feel during the whole 10 seconds experience?  To answer this subjective question 

– you would be working.  The effort you put into pulling the block would require an effort on your 

part – that is, an expenditure of energy.  But from the mathematical point-of-view the subjective 

feelings that accompany work are irrelevant.  Work is done whenever a force acts on an object 

over a certain distance.  When people do work they experience fatigue, but the forces themselves 

are impersonal.  In example (1) when the 50 N force is removed the object is slowed down by 

friction, then the frictional force also does work though no human effort is required. 

 

Mathematicians seek a precise definition of work, and one that does not rely on subjective 

statements.  For them work is done when a force makes an object move.  The mathematical 

definition of work is 

 work = force  distance work Fd  

Work is a scalar quantity.  The units of work are joules (symbol J).    

 

 Example (2) 

 A force of 14N moves an object through a distance of 6 m.  Find the work done. 


  

work

14 6 84 J

Fd
 

 

The distance must be measured in the direction of the motion of the object.  In example (1) the 

force to 50 N acts at an angle of 30 to the motion of the object.  Therefore, the force that acts on 

the block and does work is not 50 N but the horizontal component of this 50 N force, which 

is  50cos30 43.3 N . 
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30

50 N

50 cos30  =  43.3 NF = 34.2 N

R = 9.1 N

This resultant force does work
in accelerating the block

This horizontal component of the
50 N force does work in  
accelerating the block and in
overcoming the friction

both

The vertical component of this force 
does not do any work

 

 

Furthermore, as the above diagram shows, in example (1) during the first part of the motion, this 

force of 50cos30  N  in fact does two forms of work.  Firstly, it accelerates the block along the 

surface; secondly, it overcomes the frictional force that is resisting the motion. 

 

 Example (1) continued 

 In this part of the question give your answers to 2 significant figures. 

(f) Find the work done by the horizontal component of the 50 N force during the 

first 10 seconds of the motion of the block. 

(g) Find the work done in accelerating the block during the first 10 seconds. 

 (h) Find the work done by friction when the block slows down after 10 seconds. 

 (i) Comment on your answers to parts (g) and (h). 

(j) What eventually happens to the work that is done by overcoming friction in the 

10 seconds of the motion of the block and the work subsequently done by 

friction in slowing the block down? 

 

 Solution 

 (f) The horizontal component of the force is 

   50cos30 43.3 N  

  During the given time period this moves through a distance of 22.8 m. 

     

work = 

43.3 22.8 990 J 2 s.f.

Fd
 

(g) In part (a) we found the resultant force to be 9.10 N.  In part (c) we found that 

this resultant force acts on the block over a distance of 28.8 m.  Hence 

     

work = 

9.10 22.8 210 J 2 s.f.

Fd
  

 (h) The friction is 39.2 N and the distance is 5.28 m.  Hence 

     

work = 

39.2 5.28 210 J 2 s.f.

Fd
 

(i) To the level of accuracy given in the solutions, the work done in accelerating the 

block is equal to the work done in slowing it down  210 J .  We assert that in fact 

the two values are strictly equal and we shall justify this below. 
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(j) All work against friction is eventually converted into heat. 

 

In the solution to part (i) above we claim that the work required to accelerate an object from rest 

to a certain speed  1msv  is the same as the work required to decelerate it back to rest.  We can 

prove this. 

 

 Example (3) 

A particle of mass m kg is subject to a (resultant) force F newtons that causes it to move d 

metres in the direction of F.  At the end of d metres, the particle has speed 1msv .  Show 

that the energy of the particle at the end of d metres is given by 21

2
mv .  Hence prove that 

the work done in accelerating a particle to 1msv  is the same as the work done in 

decelerating it.  Hint: use one of the equations of uniform acceleration to find v and use 

the definition of work as the product of force and distance to show that the work is 

21

2
mv . 

 

Solution 

Following the hint, firstly the acceleration of the particle is 


F

a
m

 

Substituting into  2 2 2v u as  where u is the initial velocity given by  0u  

 



2 2

2

2

2

v u as

F
v d

m

 

Rearranging this equation, the work done on the particle by the force F is 

  21
work

2
Fd mv  

Regarding the second part of the question, we first observe that in this equation work is 

given by the product work Fd  and the precise magnitude of the force or distance is not 

specified.  This means that if a smaller force is given then the same work 
 
 
 

21

2
mv  can be 

done over a longer distance.  Secondly, the quantity 2v  is always positive (being a square).  

So if the signs are all reversed (equivalent to decelerating the particle) then the work done 

is still the same.   

 

When work is done energy is converted.  When pulling the block along the level surface the energy 

in your muscles is converted into the work done in accelerating the object and in overcoming 
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friction.  When lifting a crate the energy in your muscles is converted into the work done against 

gravity, which is the same as the increase in the crate’s gravitational potential energy.  So we have 

work = change in energy  

This means that from the physicist’s point-of-view work is another term for energy, and as a 

consequence of this, their units are the same – and energy is also measured in joules.  

 

The units of energy 

Energy is measured in joules (symbol J).  However, the equation  


 

work = force  distance

= mass acceleration distance
 

shows that the units of energy can also be quoted as 

   2 2 2units of energy  kg  ms  m = kg m s  

These are the units of energy in terms of the fundamental units of mass (kg), length (m) 

and time (s). 

 

In example (1) the block acquires energy in respect of its motion.  The solution to example (3) 

shows that the work done on the block to give it this energy is 

  21
work

2
Fd mv  

By the principle that 

work = change in energy  

this means that the energy of the block because it is moving is also 21

2
mv .  This energy is called 

kinetic energy.  Thus 

 21
kinetic energy

2
mv  

 

Physicists believe that whenever work is done one form of energy is converted into another.  

Furthermore, in this process, no energy is lost.  This is in accordance with the principle of 

conservation of energy. 

 

Principle of conservation of energy 

Total energy in the universe is neither created nor destroyed, but only converted from one form to 

another. 

 

This is a very general statement of the principle of conservation of energy.  In practice we are 

concerned with conversions between one form of energy and other forms.  In this case, where one 

form of energy is gained and the other is lost the energy gained must be equal to the energy lost.  

In example (1) when the block was being accelerated it gained kinetic energy.  In the second part it 
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lost kinetic energy, which was converted by friction to heat.  A system of energy conversions 

where total energy remains the same is called a closed system. 

 

 

 

Working against gravity 
 

Another example of work would be when lifting objects.  Imagine carrying a crate of goods up a 

staircase.  In this case you are working against gravity.   As you take the crate up the stairs the 

crate acquires gravitational potential energy.  If you drop the crate and it falls down the stairs the 

crate loses this energy.  When an object is in free fall it is losing its gravitational potential energy, 

which is being converted to kinetic energy – the energy of a moving object.  The force of gravity 

causes the object to fall through a certain distance; it also causes it to accelerate.  As the object’s 

speed increases its kinetic energy increases. 

 

The gravitational potential energy  U  acquired by an object when it is raised by a height  h  is 

an instance of the definition of work.  Compare 

 work = force  distance work Fd  

with 

increaase in gravitational potential energy = weight  height  

You will see that the second equation is in fact an instance of the first.   Weight is a force, height 

is a distance, and the increase in gravitational potential energy is the work done against gravity.  

Because the weight is given by  

  weight = mass  acceleration due to gravity W mg  

we see that the gravitational potential energy of an object is given by 

  gravitational potential energy = mass  acceleration due to gravity  height U mgh  

 

For objects in free fall the kinetic energy gained by the object is equal to the gravitational 

potential energy it loses. 

gain of kinetic energy = loss of gravitational potential energy  

This leads to the equation 

21

2
mv mgh  

We see that we can cancel through the mass  m  to obtain 

2 2v gh  

This equation governs the energy conversions that take place between kinetic energy and 

gravitational potential energy. 
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Example (4) 

An object falls 100m.  Ignoring air-resistance, calculate its terminal velocity. 

 

Solution 

Loss of gravitational potential energy = gain of kinetic energy.  Therefore 

 21

2
mgh mv  

2 2v gh  

 



  

  1

2

2 9.8 100

44.271 44.3 ms 3 s.f.

v gh

 

 

Whenever an object loses height it gains kinetic energy.  In reverse, when a moving object gains 

height it loses kinetic energy.   

 

 Example (5) 

 The diagram shows a particle P of mass 1 kg moving along a frictionless track 

  

 A

B

 

 

The point A lies at the foot of the track and the point B at the top.  The vertical distance 

between A and B is 3.6 m.  At A the particle has speed 120.5 ms .  Find the speed of P 

when it reaches B. 

 

Solution 

The kinetic energy lost by the particle must be equal to the gravitational potential energy 

it gains.  Because the track is frictionless no other energy conversions need to be 

considered.  The kinetic energy of the particle at A is 

     
221 1

1 20.5 210.125 J
2 2

K mv  

At B the gain of gravitational potential energy is 

    1 9.8 3.6 35.28 JU mgh  
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This gain in gravitational potential energy is equal to the loss of kinetic energy of the 

particle.  So its kinetic energy at B is 

  kinetic energy 210.125 35.28 174.845 J  

Let u denote the speed of the particle at B.  Then 





 

2

1

1
174.845

2

349.69 18.7 ms

u

u

 

 

In example (5) we allowed the simplifying assumption that the track was frictionless.  However, we 

can also introduce friction into the question.  Providing we can determine the work done against 

friction we can still use the principle of conservation of energy to make deductions.   

 

 Example (6) 

 The diagram shows a particle P of mass 5 kg moving along a track 

 

 

A B

C

D E  

  

The sections AB and CD are level.  After passing over C the particle descends to D and 

thereafter moves along a final horizontal portion of the track to pass through E.  The 

vertical distance between B and C is 5 m, and the height of C above D is 9 m.  At A the 

particle has speed 118 ms .  The length of the track between A and B is 10 m, between B 

and C it is 12 m, between C and D it is 24 m, and between D and E it is 15 m.  Throughout 

the journey the motion of the particle is resisted by a constant force of magnitude 6 N.  

Find the speed of P when it reaches E.  You may assume that the particle has sufficient 

energy to reach the point C. 

 

Solution 

There is a slight “trick” in this question, since the distances for all the segments are given.  

However, we require only the total length of the track between A and E, which is 

    length of track = 10 12 24 15 61 m  

This is the distance over which the frictional force of 6 N works.   
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So the energy lost by the particle P in moving between A and E due to friction is 

    work 6 61 366 NFd . 

 The energy of the particle at A  

      
221 1

5 18 810 J
2 2AK mv  

Provided the particle has sufficient energy to get over the hillside at C (which we are told 

to assume) then to calculate its energy at E what we need to know is the vertical drop 

between A and E, which is 

   9 5 4 mh  

In descending from the level AB to the level DE the particle loses gravitational potential 

energy equivalent to this drop. 

    5 9.8 4 196 JU mgh  

So at E the energy of the particle is 

  
  


energy at energy at loss of potential work against friction

810 196 366

640

E A

 

Let u denote the speed of the particle at E.  Then 





  

 

2

2

1

1
640

2
1

5 640
2

256 16 ms

mu

u

u

 

 

In this question we are given the frictional force and work from that to the final velocity of a 

particle.  Problems can be set in reverse. 

 

Example (7) 

A straight track is inclined at an angle of  to the horizontal, where  sin 0.2 .  The 

motion of a wagon down the track is controlled by means of a cable, which is parallel to 

the track.  The tension in the cable is 5000 N.  The wagon, of mass 4000 kg, starts from 

rest at a point on the track and after travelling 50 m, its speed is 14 ms .  The resistance 

to motion is R N, where R is a constant.  Use energy considerations to calculate the value 

of R. 

[Adapted from WJEC, June 2005 (legacy specification)] 
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Solution 

tension + friction

h = 50 sin   = 50  0.2 = 10 
50 m

4000 kg

4 ms1


 

 

As the wagon rolls down the track it gains kinetic energy. 

    2 21 1
Gain of kinetic energy 4000 4 32000 J

2 2
mv  

It also loses gravitational potential energy. 



  
   


Loss of gravitatioal potential energy

4000 9.8 50sin

4000 9.8 50 0.2

392000 J

mgh

 

It also works against the tension in the cable. 

   Work done against the tension 5000 50 250000Fd  

It also works against the frictional resistance, R, which is unknown. 

 Work done against the resistance 50Rd R  

By the principle of conservation of energy 

  





Loss of potential = gain of kinetic energy + work against tension + work against resistance

392000 32000 250000 50

50 110000

2200 N

R

R

R
 


