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On the Continuum 
 

1. The problem of the continuum 
 
In first-order set theory real numbers are identified with subsets of the first infinite ordinal, 

 .  We call the collection of all real numbers, denoted  , the arithmetical continuum, or 

continuum for short.  We also call it the real line.  The continuum is usually identified with 

the set of all subsets of  , which is the powerset of  , denoted  P , and is also the set of 

all functions,     0,12 .  What this means is that every real number has a unique binary 

expansion [See section 18.2].  Hence, the powerset is also isomorphic to the infinite product of 

the discrete space,   0,12 , and we write,       0,1P 2 .  This is called the Cantor set.  

Any space isomorphic to the Cantor set is called Cantor space.  Cantor used an anti-

diagonalisation argument1 to demonstrate that the cardinality of    P 2  is greater than that 

of the cardinality of  .  Denoting the cardinality of   by    0card ,2 the cardinality of 

the continuum by c , and the cardinality of    P 2  by 02 , this gives   0
02= c .  

Hartog’s theorem establishes that there is a succession of cardinals,   0 1 2, , , ... , though the 

structure of the upper-end of this succession requires further axioms to be determined.  The 

question arises, where in the succession of cardinals does the cardinal  02c  come?  Cantor 

conjectured the Continuum Hypothesis:  0
12 .  I shall call the determination of the size, 

 card 2 , of the continuum: the problem of the continuum. 

Since the discovery of forcing arguments by Cohen [1966] we have come to realise 

that there are many ways to answer the question, what is  card 2 ?   Each way depends upon 

a selection of forcing arguments and associated additional axioms.  This has led to relative 

consistency results.  Taking ZFC (Zermelo-Frankel set theory with Choice) as the standard 

axiomatisation of first-order set theory, it is clear that ZFC is consistent with almost any 

determination of the size of the continuum. 

 
1 Cantor introduced two arguments: the first to establish when two sets are equinumerous, which I 

designate diagonalisation; the second to establish when one infinite set is not equinumerous to the other, 

which I designate anti-diagonalisation.  It is the latter that establishes that the cardinality of the 

continuum is greater than that of the natural numbers. 

2 The symbol X  for the cardinality of  a set X is standard; but sometimes we wish to particularly 

emphasise that we are dealing with the cardinality of the set as opposed, say, to its length or measure, so 

we have  card X  as well. 
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Thus in ZFC the size of the continuum,  card 2 , is under-determined.  This has the 

immediate air of paradox, because a representing set of the continuum such as the Cantor set, 

      0,1P 2 , should be an unambiguous structure completely determined “up to 

isomorphism”.  What the relative consistency results tell us is that ZFC is a “weak” theory – it 

is a theory capable of many models.  It follows that as a model of the arithmetical continuum 

the Cantor set represents not one but a plethora of models.  But since the Cantor set “ought” 

to be an unambiguous structure, identical to others up to isomorphism, this situation requires 

explanation.  So the problem of the continuum comprises not only the determination of its 

cardinality but more fundamentally a determination of an appropriate structure for the 

continuum, one that makes the structure of the Cantor set, 2 , as a representing set of the 

continuum unambiguous. 

The set theoretical view of   is that it is the least infinite ordinal.  This makes it a 

transitive set whose members are the finite ordinals.  Since the Cantor set is the power set of 

  this means that   must be related in some intimate way to the structure of the continuum.  

Since  card 2  is capable of many solutions, it follows that the role of   is also ambiguous: 

there must be as many ways to relate  to the structure of the continuum as there are 

solutions to 
 02 .   

In analysis we use the Axiom of Completeness.  For example, standard results in 

analysis, such as Rolle’s theorem or Cauchy’s mean-value theorem depend on it.  The Axiom of 

Completeness was formulated in the 1890s by Dedekind, Weierstrass, Borel, Cantor and 

others.  It is at this point that we make a striking discovery: while the Axiom of Completeness 

is the principle and distinctive tool of analysis and provides the greatest insight into the 

structure of the real line, I can find no explicit use of it or exploration of its consequences in 

the literature discussing the continuum from 1900 onwards.  A theory is said to be first-order 

if whenever we quantify in the theory, that is refer to collections using the term “all”, the 

objects that we collect are sets or individuals.  A theory is said to be second-order if we allow 

ourselves to quantify over properties and functions, or equivalently, over sets of sets.  First-

order logic is concerned with deductions between first-order expressions; and second-order 

logic with deductions between expressions that are second-order.  It is not possible to give a 

first-order formulation of the Axiom of Completeness 

In this monograph, I shall demonstrate that the Axiom of Completeness entails the 

Continuum Hypothesis and provides an unambiguous determination of the structure of the 

real line.  I shall also explain the role of   in that determination.  The principle tools, whose 

meanings shall be subsequently defined, are: - 

 

1. The skeleton of the line; 

2. The one-point compactification of the skeleton; 

3. The Mahler classification of transcendental numbers. 
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All of these principles depend upon the Axiom of Completeness together with the Dirichlet 

pigeonhole principle, which is implicit in all discussions.  I shall employ ZFC as a language, 

drawing on its axioms as required.  In fact, not all of ZFC is required, since the full scope of 

the power set axiom is not used.  However, since this is an exercise in second-order logic, the 

restrictions of working in ZFC, which cause set theorists much labour, shall not apply here. 

 It is important to stress from the outset that the result presented here is a conditional 

one.  What shall be established is that the Axiom of Completeness and the Dirichlet 

Pigeonhole principle together entail the Continuum Hypothesis.  On the other hand, this does 

come at a price – for example one consequence of this model is the existence of non-

measurable sets.  Furthermore, it exposes all the more clearly the possibility of alternative 

interpretations of the continuum.  In the long run I suggest that the determination of the 

structure of the continuum and its cardinality will become empirical questions. 

 The parallel postulate of Euclid would be a very good illustration of how our 

interpretation of an axiom may undergo change.  Consider an axiom,  .  At the first stage   

appears to be grounded in intuition and self-evident.  No alternative to the axiom is even 

conceivable.  At the second stage, notwithstanding the apparent self-evident aspect of  , 

doubts about its status emerge, and a research program starts with a view to deducing   

from other axioms that are still held to be self-evident.  It is still not possible to imagine an 

alternative to A, and no model of A  is as yet available; nonetheless, its status as self-evident 

truth grounded in intuition has by this stage been called into question.  At stage three several 

models of   emerge.  It is then acknowledged that   is not self-evident and that   is 

conceivable.  Finally, by stage four, whether   is true or false has become an empirical 

question.  Alternative empirical theories, some based on   and others based on  , emerge, 

and these become subject to empirical confirmation. 

With the Continuum Hypothesis we have not yet reached the fourth stage of this 

process; and we are still stuck confusedly in the third stage.   

2. The potential and actual infinite 

2.1 The potential infinite and the Archimedean property 

The distinction between the potential and actual infinite is an important part of the 

conceptual background to an understanding of the continuum.  Like the second-order Axiom 

of Completeness, this distinction has been largely ignored for more than a century. 

Aristotle [2012/c 350 BC] in his Physics introduced the distinction.  The potential 

infinite is illustrated by the inexhaustibility of counting; for no mater how large a number we 

have reached it is always possible to count to a higher one merely by adding one more.  In the 

actual infinite we conceptualise the entire process of counting as a completed totality.   
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The potential infinite is symbolised by  , which represents the inexhaustibility of 

counting.  The natural numbers are 1, 2, 3,  ... .3  Here the dots also indicate the potential 

infinite.  When we wish to talk of the collection of all natural numbers we represent this by 

 .  This collection is a potential infinity.   

In the actual infinite we have a conception of a completed collection of infinite  

objects – usually points or numbers – as given actually in its entirety.  The theory of actually 

infinite collections is set theory, which employs many symbols for such objects.  The least 

infinite collection is denoted by  .  This is the collection of finite ordinal numbers – which 

are sets ordered in succession.   

Whereas the collection of all finite ordinals,  , is bounded above, the collection of 

natural numbers,  , is not bounded above.  The property of not being bound above is 

equivalent to the Archimedean property. 

2.1.1 Archimedean property 
If a and b are any particular integers, then there exists a positive integer n such that 

na b .  (Burton [1976] p.2)   This implies that   is not bounded above. 

 

The ordinal   is conceptualised as another ordinal following in succession after all 

the finite ordinals.  But, given that all set theorists regard the collections   and   as one and 

the same set, casting doubt on this identification may seem surprising and unacceptable.  

Nonetheless, the validity and importance of the distinction will emerge as the argument 

unfolds.  The difference between   and   is encapsulated by the following result: - 

 2.1.2 Lemma 
 For   the following statements are equivalent: - 

 1.   is a limit ordinal 

 2.         1n n n  

 3. 





 sup
n

n  

 (Proof in Potter [2004] p. 181)4 

 

In the second of these statements: we cannot substitute   for  ; the expression    is 

meaningless, and   is the collection of natural numbers not its least upper bound.  On the 

other hand   is the least upper bound (supremum) of all ordinals.  Thus, if     we must 

allow the collection of all natural numbers,  , to be bounded, contradicting the Archimedean 

 
3 The omission of 0 from this list is simply pragmatic.  We use 0 for the zero of a lattice, 0 may sometimes 

appear as synonym of the null set, 0 as a point in the closed interval  0 , so to avoid confusion we are 

taking 0 out of the natural numbers. 
4  I have slightly adapted the theorem in Potter which is for all limit ordinals.  Only   concerns us here. 
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property.  We must either dispense with the Archimedean property or drop the commonplace 

identification of    .   

 

... there is a least limit ordinal, which is called   (“omega”).  The members of   are 

called finite ordinals or natural numbers.  In other words, to a set theorist    .  

(Wolf [2005] p. 83) 5 

 

On the other hand, if we allow the Completeness Axiom, then we must draw the distinction.  

This is because we can derive the Archimedean property of the natural numbers from the 

Completeness Axiom. 

2.1.3 Analytic proof of the Archimedean property from the Completeness Axiom 

Suppose   is bounded above.  Then by the completeness axiom there exists a unique 

real number u, such that  supu .  For any number n  the number  1n , 

hence  1n u  and  1n u .  This is true for all n , hence 1u  is an upper bound 

for  .  This contradicts the uniqueness of u, so   cannot be bounded above.6 

 

 Contrary to appearances, it turns out that the distinction between   and   is 

already implicit in set theory, which does have devices to deal with potential infinities, even if 

it does not “officially” recognise them.  One such device is the expression  ; the distinction 

between   and   is vital to the discourse on the continuum, yet the two sets would appear 

to have the same enumeration: - 

 

      0,1,2,... 0,1,2,...  

 

We also meet the potential infinite in the concepts of an open set or interval, and in the 

concept of cofinality.  In first-order set theory where we implicitly draw a distinction between 

the potential and actual infinite, we use the symbol,  .   

 
5 For another statement of this kind: Ordinals are the order types of well-ordered sets.  They are the 

infinite analogues of the natural numbers, and in many respects they behave like the latter ones.  In fact, 

the finite ordinals are the natural numbers, and hence the transfinite class of ordinals can be considered 

as an endless continuation of the sequence of natural numbers.  (Komjáth and Totik [2000] p. 37) [My 

underlining.] 

6 It might be objected that in set theory, the unique real number that is the supremum of   is   sup  

and that the expression,  1 , is meaningless.  However, in the argument above u is a real number, so we 

may subtract from it.   It is not assumed that the supremum is  . 
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3. The phenomenological and the arithmetical continuum 

3.1 The phenomenological continuum 

The phenomenological continuum of space and time that was described by Aristotle in his 

Physics is not used in modern mathematics.  However, it is the starting point for our intuitions 

regarding the continuum.  This concept was refined by Kant in The Critique of Pure Reason. 

The phenomenological continuum is the continuum that we meet in experience.  It is 

the continuum that is presented directly to our own eyes and mind.  Key features of this 

concept are: - 

 

1. Points are dimensionless.  No continuum is composed of points.  Points act as 

boundaries or limits only.  They are fictional (that is “ideal”) elements.7 

2. Space is composed only of space; subdivision of the continuum generates only 

another continuum.8 

3. Subdivision of the continuum may carry on indefinitely.  Thus, space is potentially 

infinite.  Space is never actually infinitely divisible.9 

 
7 “Now if the terms ‘continuous’, ‘in contact’, and ‘in succession’ are understood as defined above things 

being ‘continuous’ if their extremities are one, ‘in contact’ if their extremities are together, and ‘in 

succession’ if there is nothing of their own kind intermediate between them – nothing that is continuous 

can be composed ‘of indivisibles’: e.g. a line cannot be composed of points, the line being continuous and 

the point indivisible.  For the extremities of two points can neither be one (since of an indivisible there can 

be no extremity as distinct from some other part) nor together (since that which has no parts can have no 

extremity, the extremity and thing of which it is the extremity being distinct).”  Aristotle [2012 / c 350 BC 

Book VI, §1] 
8 “Nor, again, can a point be in succession to a point or a moment to a moment in such a way that length 

can be composed of points or time of moments: for things are in succession if there is nothing of their 

own kind intermediate between them, whereas that which is intermediate between points is always a line 

and that which is intermediate between moments is always a period of time.” Aristotle [2012 / c 350 BC 

Book VI, §1] 

“The property of magnitudes by which no part of them is the smallest possible, that is, by which no part is 

simple, is called their continuity.  Space and time are quanta continua, because no part of them can be 

given save as enclosed between limits (points or instants), and therefore only in such fashion that this 

part is itself again a space and a time.  Space therefore consists solely of spaces, time solely of times.  

Points and instants are only limits, that is, mere positions which limit space and time.  But positions 

always presuppose the intuitions which they limit or are intended to limit; and out of mere positions, 

viewed as constituents capable of being given prior to space or time, neither space nor time can be 

constructed.  ... Kant, Immanuel [1982 / 1781]  Critique of Pure Reason.  Part 2. Transcendental Logic.  

First Division.  Chapter II.  § 3.2 Anticipations of Perception.  Translated by Norman Kemp Smith, First 

edition 1929. (Reprinted 1982) p. 204] 
9 “We must keep in mind that the word ‘is’ means either what potentially is or what fully is.” [Book III, §6] 

“... magnitude is not actually infinite.  But by division it is infinite.  ... The alternative then remains that the 

infinite has a potential existence.” ).”  Aristotle [2012 / c 350 BC]  Book III, §6. 
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Greek science adopted the phenomenological continuum as a basis of science.  Historically, 

this prevented the emergence of the calculus, which requires the actual infinite.  Greek 

mathematicians adopted other methods in order to obtain practical formulas for integrals – 

specifically, the method of exhaustion. 

3.2 The “necessity” in analysis for the actual infinite 

  is the complete set of all ratios of measure of part to whole.  Let 1I  represent a whole 

interval, and 2I  a part.  Then 1

2

I

I
.  If the ratio 1

2

I dy

I dx
 is irrational and is deemed not to 

belong to the continuum 
 

 
 

1

2

I

I
, then the continuum is incomplete.   

 Consider two distinct sequences that converge on the “same irrational number”, say 

2 .  But if we do not have a notion of a two sequences being actually infinite, then it is 

strictly not possible to talk of them as converging to the same limit, for 2  does not exist. 

Historically, set theory developed out of analysis: sets began their existence as 

sequences.  Let us say 2  is the name of such a sequence.  Then 2  does not name the limit 

but only the sequence.  It is an inductive rule for systematically generating ratios and is 

connected to the process of counting and the potential infinite.  The sequence cannot be 

grasped without the rule, which is its concept (or intension).  So, at this stage, 2  is an 

intensional object.  With the intensional concept of sequence, each sequence is different, so 

there are as many 2  as there are sequences that approximate to it.  In order to prevent this 

situation whereby different sequences with the same limit are different numbers, we must 

introduce a unique number that is the identical limit of these differing sequences.  This 

transforms the intensional notion of sequence into the extensional notion of an equivalence 

class of ordered sets and into an actual infinity.  Cauchy added 2  not as the name of a 

sequence but as the name of the limit of a sequence.  Under this conception, different 

sequences can have the same limit.   

But even this is not enough, for the set of all definable sequences is countably infinite.  

What about limits that cannot be identified by a rule?  We wish to talk of all sequences and all 

limits independently of whether we can construct the sequence or not.  So we extend our 

concept of number to include the concept of a set of all numbers, which are limits, regardless 

 
“The infinite, then, exists in no other way, but in this way it does exist, potentially and by reduction.” 

Aristotle [2012 / c 350 BC]  Book III, §6. 

“But in the direction of largeness it is always possible to think of a larger number: for the number of times 

a magnitude can be bisected is infinite.  Hence this infinite is potential, never actual: the number of parts 

that can be taken always surpasses any assigned number.  But this number is not separable from the 

process of bisection, and its infinity is not a permanent actuality but consists in a process of coming to 

be, like time and the number of time.” Aristotle [2012 / c 350 BC]  Book III, §7. 
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of whether we can construct them or not.  This is what happens in Dirichlet’s characteristic 

function: - 

 

 


 


1  iff   is rational

0 iff   is irrational

x
x

x
 

 

This is based on the totality of all real numbers, regardless of how they are constructed. 

The completeness axiom asserts the independent existence of limits, independently of 

the sequences that approximate to them, so explicitly allows for quantification over limits as 

now real numbers.  From this arises the concept of the arithmetical continuum. 

The term “necessity” in the heading of this subsection is in scare quotes.  The actual 

infinite is part of a system of explanation whose validity ultimately rests on empirical 

evidence.   Even if we allow that there are some necessary truths grounded in intuition, the 

concept of the actual infinite could not be justified in that way.  It is necessary because we 

deem it to be so.  Nonetheless, this does not make it a matter of convention either, so a 

constructivist, formalist or strict finitist solution to these problems is not even hinted at here.   

3.3 The arithmetical continuum 

This is illustrated by the following quotation from G.H. Hardy: - 

 

The aggregate of all real numbers, rational and irrational, is called the arithmetical 

continuum. 

It is convenient to suppose that the straight line ... is composed of points 

corresponding to all the numbers of the arithmetical continuum, and of no others. 

The points of the line, the aggregate of which may be said to constitute the linear 

continuum, then supply us with a convenient image of the arithmetical continuum. 

Hardy, G.H. [1908 / 1967] Chapter 1. §15. 

 

This conception contradicts the phenomenological continuum of Aristotle.  It states that a line 

is composed of points.   

3.4 Fundamental problem of the arithmetical continuum 

Assuming the points have no size whatsoever, then the line is an infinite collection of objects 

that have no size.  Can a mere collection of points, which are boundaries, limits or extremities, 

ever become extended in space?  This question poses the fundamental paradox of the 

arithmetical continuum. 

 The real line comprises   cardc  of uncountably infinite points.  Any collection of 

countably infinite points  0  has zero measure.   There exist countable collections of open 

sets (intervals) with positive measure.  There exist collections of continuum many points, c , 
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whose measure is zero.  These are perfect sets isomorphic to the Cantor set   3SVC 2 .  Yet 

the Cantor set   3SVC 2  is also a representing set for the continuum,  .  We cannot prima 

facie derive measure from cardinality.  For example, we cannot adopt as a rule: all sets of 

points of cardinality continuum have positive measure, and all sets of cardinality less than 

continuum have zero measure.  Such a rule is inconsistent. 

3.5 Intervals and the order topology 

In point set theory an interval is defined by reference to the order topology. 

3.5.1 Definition, open interval 

Let ,X  be an ordered set.  An open interval of X is a set which is of the form 

      , :u v z X u z v  where u v .  Levy, Azriel [2002] p.200. 

 

In this definition, there is no reference to either continuity or connectedness.  So an interval in 

point set theory does not have to be connected: 
 
 
 

1 3
,

2 4
 is an interval in   but is not 

connected and not continuous;
 
 
 

1 3
,

2 4
 is an interval in   but is connected and continuous 

with positive measure  
3 1 1

4 2 4
.  Intervals may be defined, but they do not carry with them a 

“primitive” notion of extension.  Intervals may be mere collections of discrete points.  When 

does an interval have a positive measure, and when does it not? 

 

4. Axiom of Completeness 

4.1 Equivalent forms of the Axiom of Completeness 

The following five statements are equivalent versions of the Completeness Axiom: - 

 

1. Dedekind completeness axiom 

Let the set of all real numbers,  , be divided into two sets L, R such that every 

member l of L is less than every member r of R, where neither L nor R is empty.  Then 

there exists a number   such that every number less than   belongs to L and every 

number greater than   belongs to R.  The number   is said to divide the set  .  The 

number   may be a member of either L or R.  If it is a member of L then it is the 

greatest member of L; if it is a member of R then it is the least member of R.10 

 
10  More succinctly: Any non-empty subset of   which is bounded above has a least upper bound in the 

set.  The least upper bound is called its supremum. 
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2. Bolzano-Weierstrass theorem 

Every infinite bounded subset has a limit point in the set. 

3. Cantor’s nested interval principle 

Given any nested sequence of closed intervals in  , 

             1 1 2 2, , ... , ...n na b a b a b  , 

there is at least one real number contained in all these intervals: - 





   
1

,n n
n

a b  

4. Cauchy convergence criterion 

Let S by a non-empty subset of  .  Every Cauchy sequence on S converges to a real 

point in S. 

5. Heine-Borel theorem of real analysis 

Let X be a closed, bounded set on the real line  .  Then every collection of open 

subsets of   whose union contains X has a finite subclass whose union also contains 

X.   

 

The Completeness Axiom is irreducibly a statement of second-order logic.  As Woff remarks: - 

 

“... the completeness property – that every set of reals with an upper bound has a 

least upper bound – is unavoidably second order...”  Wolf, Robert S [2005] p.43. 

 

It is irreducibly second order because it refers to all subsets of the domain,  , and there is no 

way to state it without such a reference.  The Heine-Borel theorem was deduced from the 

Dedekind Completeness Axiom before it was realised that the two statements are equivalent.  

It is important to examine the proof of the Heine-Borel theorem. 

4.1.1 Proof summary of the Heine-Borel theorem 

Let  ,a b  be a closed interval in  .  Assume it has a cover, possibly infinite.  Then 

there is a neighbourhood         , , : , for all bU x a b b x  which is a member of 

some cover for  ,a b .  Removing this neighbourhood from  ,a b  we obtain the interval 

    , ,a b a b .  By defining suprema on finite subsets of this interval, it follows from 

the Completeness Axiom that there is a finite cover, a subsequence,  , that covers 

 ,a b .   Then   ,bU  is a finite cover for  ,a b . 

 

The aim here is to show the close relationship between the Heine-Borel theorem and the one-

point compactification of  ,a b . 
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4.1.2 Definition, Alexandroff 1-point compactification 

The addition of a neighbourhood of b to the half-open interval  ,a b  shall be called 

the Alexandroff 1-point compactification of  ,a b .11 

 

Thus, every closed interval,  ,a b , in the arithmetical continuum,  , has a one-point 

compactification.   

4.2 Separability 

Suslin characterized the real line (arithmetical continuum) as the unique separable, complete, 

linear order with neither end points nor isolated points.12   

4.2.1. Definition, separable 
A separable space has a countable dense subset. 

4.2.2 Definition, Hausdorff space 

A topological space, T, is Hausdorff if given any two distinct points ,x y T  there 

exist distinct disjoint open subsets U, V of T containing x and y respectively. 

 

The arithmetical continuum,  , is both separable and Hausdorff, and on   these represent 

equivalent notions.  Separability is an essential component of the concept of the arithmetical 

continuum because it expresses the manner in which real numbers are constructed out of the 

sequences of rational numbers that approximate them.  Real numbers do not appear “out of 

nowhere”, but emerge on closure of their rational dense subset.  By Cantor’s anti-

diagonalisation argument, the number of reals generated in this fashion is of uncountable 

cardinality c .  The Hausdorff condition requires different convergent sequences to converge 

to unique points: - 

 4.2.3 Proposition 
 In a Hausdorff space any given convergent sequence has a unique limit. 

 

All three properties, 1-point compactification, separability and the Hausdorff condition are 

consequences of the Axiom of Completeness. It is also worth remarking that the Hausdorff 

condition is also a topological invariant, meaning that it is preserved by homeomorphisms.   

 
11 The following is the definition given in Givant, Steven and Halmos, Paul [2009]: “If Y is a topological 

space, and if X is obtained from Y by adjoining a single point x0, then the one-point compactification of Y is 

the set X with the following topology: the open subsets of X are defined to be the open subsets of Y and 

the complements in X of the closed compact subsets of Y.”  p. 344. 
12 Described in Stephrans, Juris [X] 
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4.3 On the difference between first-order and second-order theories 

The approach of first-order set theory is to convert second-order axioms into first-order 

definitions. 

 The Axiom of Completeness makes an existential claim: if a sequence is convergent, 

then there exists a unique limit to that sequence.  Not only does it call into existence the limit 

as a real number, it also calls into existence the collection of all those real numbers, the 

arithmetical continuum.  Therefore, from a historical point of view at least, the arithmetical 

continuum and the Axiom of Completeness are one and the same.  The arithmetical 

continuum is the topologically invariant structure that the Axiom of Completeness calls into 

existence. 

 In set theory no such existential claims are made.   A structure is defined to have 

certain properties – for example, it is a space that is complete, separable, and so forth, but it is 

not asserted that the structure exists.  Except for the simplest cases, first order axioms and 

definitions do not give categorical structures.  This set-theoretic approach allows us to 

conceive of different structures, different spaces within which to do our physics, and in this 

manner it assists the expansion of the empirical method. 

 The arithmetical continuum is not given a priori; it is not, in the language of 

Descartes, manifested self-evidently by the clear light of reason.  It is a hypothesis of science.  

Nonetheless, we need to appreciate the centrality of the Axiom of Completeness.  The problem 

of the continuum arises because we are attempting to use first-order definitions to solve a 

problem that can only be solved by second-order axioms.  First-order set theory is not 

categorical for the continuum. 

 

5. Partitions and lattices 

5.1 Finite partitions of the unit interval 

The arithmetical continuum, denoted  , is homeomorphic to any open interval:   ,a b .  

However, it will be useful to take as our representative of the arithmetical continuum the 

closed unit interval:            0,1 .  We choose a closed interval because our main 

tool of analysis shall be the Axiom of Completeness in the form of the Heine-Borel theorem, 

which requires a compact interval (i.e one closed and bounded), and it makes sense to 

normalise this by taking its measure (length) to be     0,1 1 . 

 Let us begin with a partition of    0,1  into four mutually disjoint pieces, that we 

shall call atoms:     1 2 3 4, , , . 

 

0 1

1 2 3 4

{1} {2} {3} {4}  



 ON THE CONTINUUM 

© Peter Fekete 15 23 February, 2013 

 

This is a finite partition of the unit interval.  A lattice is any partially ordered set (poset),  , in 

which there are some meets x y  and joins x y  of elements ,x y P .  The finite Boolean 

representation theorem affirms that for any finite Boolean lattice meets correspond to set 

theoretic intersections, and joins to unions.  That is: - 

     x y x y x y x y  

In this context we will assume the generalised Boolean representation theorem, also known as 

the Stone representation theorem, which states that the equivalence may be extended to 

infinite lattices.  This equivalence is stated as the principle that every Boolean lattice 

corresponds to a field of sets.13  This Boolean lattice that is derived from the partition: 

    1 2 3 4, , , , which shall be called its skeleton. 

 

1

0

1 2 3 4

1 2 1 23  3 1 24  4 3 4

1 2 41 2 3 1  43 2  43

1

2

3

4

 

 

Every such Boolean lattice has a bottom element, 0, which corresponds to the null set; and a 

topmost element, 1, which corresponds to the entire space, here    0,1 .  The elements 0 and 

1 are said to be “distinguished elements” of the lattice.  This diagram illustrates that this 

lattice is a metric space, where the distance between lattice points has measure   , 1d x y  if 

there is no intervening lattice point.  When two elements ,x y   are such that x y  and 

  , 1d x y  then we say that x covers y.  Atoms are precisely those elements of the lattice  i  

for which meets   ,i j i j  do not exist as distinct elements of the lattice; that is, 

    ,i j i j .  Hence, atoms cover the 0 element of the lattice. 

 In this context the terms Boolean lattice, Boolean algebra and Boolean ring may be 

treated as synonymous. 

 The following diagram demonstrates the isomorphism of the Boolean lattice with the 

propositional logic of two propositions, p and q, and with the field of sets generated by the 

discrete topology on   1,2,3,4X .  This is the Boolean algebra,  
44 0,12 .   

 
13 The Stone representation theorem depends on the Axiom of Choice, but I will subsequently clarify why 

it is reasonable to assume this on the arithmetical continuum and that it belongs to it as a concept.  
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{1} {2} {3} {4}

{3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

1 = {1,2,3,4}

{1,2} {1,3} {2,3} {2,4}
p q pqp q

p q  p q p qp q

p q
p q  p q  p q

p q

0  

 

 The term atom is standard in Boolean algebra for mutually disjoint members of a 

partition that cover the 0 element. An atom is a member of a topological basis for the space 

   0,1  (or any space, X, homeomorphic to it).  So an atom is not in general a point.  The 

atoms of the continuum are, except in special cases, not points of the continuum. 

 A Boolean algebra is also a vector space, and the atoms comprise a set of linearly 

independent vectors that span the space, which is called a Hamel basis.   Each Boolean algebra 

is thus related to a tree structure which generates all linear combinations of the vector space 

as branches; the members of the Hamel base being generated as a subset of these branches: - 

 

0
0
0
0

0
0
1
0

0
0
0
1

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1  

 

The tree form may be denoted 42  where   0,12 .  We see that   0,12  is a factor space of 

every Boolean algebra; every Boolean algebra is a product of copies of   0,12 .  Since 

  0,12  is a factor of every (finite) Boolean algebra they have the form 2n

B , where n denotes 

the number of copies of 2 of which it is a product 
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 Just as there is no real difference between a Boolean algebra, a Boolean lattice and a 

Boolean ring, because they are different descriptions of the same underlying structure, so the 

tree form is just another description of this self-same structure.   

5.2 Derivation of the lattice from the skeleton 

5.2.1 The skeleton 

The partition of    0,1  on which the Boolean algebra is constructed is called its 

skeleton.  For example, in 4B  the skeleton is its collection of atoms: - 

                        1 2 3 4, , , 1 , 2 , 3 , 4 0,0,0,1 , 0,0,1,0 , 0,1,0,0 , 1,0,0,0  

 

The relationship between the skeleton and the lattice is a derivation. [See also section 18.2]  

This means that a lattice is uniquely determined by its skeleton and, conversely, we can 

recover the skeleton from its lattice.14  This is arguably the most important observation to 

make about the continuum, as we shall proceed to demonstrate.  Although the lattice is a 

larger structure than the skeleton, all the information contained in the lattice is already 

contained in its skeleton.  The other lattice points correspond to logical and linear 

combinations of basis elements (atoms), and topologically to other subspaces of the interval 

   0,1 .  In the case of the Boolean lattice n2  the skeleton of is a partition of the unit interval 

   0,1  into a basis of n atoms.  This partition is also isomorphic to a structure known as the 

Boolean space of the lattice.   

There are several ways in which one can generate a topological basis for a lattice.  

Another such way is to use co-atoms.  These are elements of the lattice that are covered by the 

maximal element, 1.  In our example, 42 , the co-atoms are: - 

                      4 1,2,3 , 3 1,2,4 , 2 1,3,4 , 1 2,3,41 1 1 1  

5.3 Exogenous relationships 

The only relations generated by the derivation of the lattice from the skeleton are those of 

meets and joins.  This has important consequences. 

 

1. If we change the order of the atoms in the skeleton, we derive the same lattice.  For 

example, the following two skeletons of    0,1  have the same Boolean lattice: - 

 

0 1

{1} {2} {3} {4}

0 1

{1}{2} {3} {4}  

 

 
14 There are lattices which are not Boolean lattices.  This result applies to all distributive lattices.  Here we 

are only concerned with Boolean lattices. 
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2. If we alter the relative size of atoms in the skeleton, we also derive the same lattice: - 

 

0 1

{1} {2} {3} {4}

0 1

{1} {2} {3} {4}  

 

The atoms here denote intervals, but here size is an exogenous notion.  We cannot 

derive the measure, length or size of an atom from the mere fact that it is an atom. 

 

The atoms of the skeleton form a collection known as an antichain.   

5.3.1 Definition, antichain 
An ordered set P is an antichain if x y in P only if x y . (Davey and Priestley [1990] 

p. 3) 

5.4 Chain and antichain 

The first observation above demonstrates that order is exogenous to the structure of the 

lattice.  We have labelled the atoms,        1 , 2 , 3 , 4 ; however, these are purely labels, and from 

the point of view of the lattice, any other labels would do, for example: , , , %a X .  The lattice 

is derived from the atoms of the skeleton, which is an antichain.  To number the members of 

this antichain and place an order upon them is to convert it into a chain.  The lattice generated 

by a chain of n elements comprises just 1n  elements, where successive elements cover each 

other.  So we cannot convert the antichain of the skeleton into a chain; if we do so, we destroy 

the lattice. 

 Nonetheless, the arithmetical continuum is required to represent continuous motion, 

which implies a particle passing through a succession of points or stations as it progresses 

from start (0) to finish (1) across the interval   0,1 .  Hence, the skeleton of the arithmetical 

continuum must simultaneously be both an antichain and a chain.  As an antichain the lattice 

of subspaces is derived from it; as a chain it has the possibility of representing continuous 

motion. 

 To accommodate this seemingly paradoxical property, we impose an exogenous 

relationship of order upon the atoms of the skeleton; that is, we label them as members of a 

well-ordered ascending chain, yet ignore this information when we derive the lattice from the 

skeleton of atoms.15 

 
15 It is a claim that this exogenous relation of order is a consequence of the primitive notion of continuity.  

For continuity the atoms must come in some order by convention, say from left to right.  In the notion of 

a ratio, the bigger part must contain the smaller, so that in a progression from left to right, the smaller is 

completed first.  Hence, this exogenous relation of order is also derived from a primitive notion of 

continuity. 
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5.5 Filters and ideals 

Consider the Boolean lattice 42 with skeleton: - 

                        1 2 3 4, , , 1 , 2 , 3 , 4 0,0,0,1 , 0,0,1,0 , 0,1,0,0 , 1,0,0,0  

We may define on this lattice a family of those sets that contain as a subset the atom  1 .  

This shall be called its filter.   

5.5.1 Example 

 
 

  
              

 

  

  



filter 1 1

:1

: 1

1 , 1,2 , 1,3 , 1,4 , 1,2,3 , 1,3,4 , 1,2,3,4

x

x X x

x X x
.  

{1}

{1,3}

{1,2,3}

1 = {1,2,3,4}

{1,2}

{1,4}

{1,2,4}

{1,3,4}

 

 

A filter is also called an up-set, which helps one to visualise its meaning.  A filter is 

said to be a principal filter if it has a unique lowest element.  In the above example  1  is the 

principal element.  This means that every member of the filter contains  1  as an element.  In 

finite lattices all filters are principal; however, in infinite lattices this may or may not be the 

case.  The dual notion is an ideal, which is a down-set. 

5.5.2 Definition, ideal 
An ideal is a non-void subset J of a lattice L with the properties 

   1 , ,  imply p M x L x p p M  

   2 ,  imply p M q M p q M  

 

If we visualise the entire lattice as a “space”, a principal filter corresponds to a series of 

concentric circles radiating from a specific point of this space.  A filter may also be pictured 

as a section through the space. 
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These diagrams are for heuristic purposes.  Every filter contains the entire space, so 

these diagrams do not show the greatest, 1, and least, 0, elements of the lattice. 

 

 In a finite lattice a filter is called an ultrafilter if its principal element is an atom.  In 

an infinite lattice there may not be any principal elements; an ultrafilter in an infinite lattice is 

one which covers the 0 element.  So in infinite lattices ultrafilters take on the role of atoms. 

 The dual notion is that of a prime ideal.  An ideal is prime if it is only covered by the 

greatest element, 1, of the lattice. 

 The Stone space of a lattice is the collection of all its prime ideals.  Let L be a lattice 

with skeleton P of atoms.  Then the Stone space S of prime ideals of L comprises a skeleton of 

atoms of another lattice L .  The original lattice and the lattice derived from the Stone space 

are isomorphic: L L .  Essentially, they are one and the same structure, though relative to L, 

the lattice L  is upside down.  ( L  is an inverted, isomorphic copy of L.).  In a finite lattice, the 

collection of prime ideals of L  is isomorphic to the collection of co-atoms of L. 

5.6 Refining the skeleton 

Imagine we have a partition skeleton of the unit interval    0,1  into four basis atoms: - 

 

0 1

1 2 3 4  

 

We may refine the skeleton by splitting the notional atoms; for example, we may split each 

atom in two,    1 1 2, , and so forth: - 

 

0 1

1 2 3 4

1 2 3 4 5 6 7 8

Refinement
0 1
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To each skeleton there corresponds a lattice.  Visualising these lattices as spheres16 the 

process of refining the skeleton leads to an embedding of lattices.  I shall also refer to the 

skeleton of the lattice as its floor, and to the collection of prime ideals as its ceiling.  Thus a 

refinement of the skeleton is a simultaneous process of lowering the floor of the lattice and 

raising its ceiling. 

 

 

Raising the ceiling

Lowering the floor

Embedding of lattices Refining the partition

Boolean lattices Boolean spaces
Duality

 

 

5.4 Boolean-valued models and avoiding semantics 

Since we have a correspondence between set theory and Boolean lattices, these Boolean 

lattices may be described as Boolean-valued models of parts of set theory.  Finite lattices are 

only models of finite parts of set theory: not all the axioms of ZFC hold in these models.  

However, what we are doing here by working directly in lattices that are models of some 

relevant part of ZFC is circumventing the need to consider the machinery of semantics – that 

is, the relations between the languages of set theory and first-order logic, and their models. 

5.7 Finite proof paths and logical consequence 

5.7.1 Definition, path 
A path in a lattice is any chain of connected lattice points, finite or infinite. 

 

Wherever possible I wish in this monograph to avoid the introduction of formal logic.  

However, some observations on the application of Boolean lattice to logic shall be necessary.  

 

1. In order to turn a Boolean lattice into a model of a particular logic we require lattice 

points to correspond to propositions and impose an external direction to the lattice.    

Specifically, we claim that all valid inferences proceed up the lattice.  For example: - 

 
16 This picture is jusfied in the separate notes on infinite lattices. 
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1

p q pqp q

p q  p q p qp q

p qp q  p q  p q

p q

0

LOGICAL
CONSEQUENCE

 

 

2. As the diagram illustrates this gives rise to the concept of logical consequence.  Let p, 

q be propositions corresponding to lattice points; then q is a consequence of p iff 

there is an upward path in the lattice from p  to q  (p lies below q).  This means that 

every filter defines a relation of logical consequence.  Every proposition 

corresponding to a lattice point in  filter p  is a consequence of the proposition 

represented by p.  This also means that all inference in the lattice proceeds by dilution 

of information: p contains more information than any consequence of p. 

3. Lattices may be finite or infinite.  If a lattice is infinite then there are paths in any 

filter that may be infinite in length.  We shall say that q is a logical consequence of p 

if q is any lattice point in  filter p .  We shall say that q is a logical deduction from p 

if, in addition, the path from the lattice point p to q is finite (or locally compact)17.  We 

denote these relations: p q  for logical consequence, and p q  for logical deduction. 

4. A logic is complete if   iff  p q p q  .  This means that to every path in any filter is 

finite (or locally compact).  A logic is incomplete if   but not  p q p q  .  In such a 

case there is an infinite path in a filter with no locally compact sub-path. 

 

6. The potentially infinite division of the unit interval 

6.1 The potentially infinite skeleton 

We may observe that no finite skeleton of the unit interval    0,1  can produce a countable 

dense subset.  A finite skeleton is not a dense subset of the unit interval.  Therefore, we need 

to continue the process of refining the partition, or equivalently, lowering the floor of the 

 
17 Essentially, the path in a derivation is finite.  This is because formal proofs are finite structures.  The 

term locally compact is defined below, (Def. 6.1.1).  The need to include this is that a path may appear to 

be infinite, and hence not a derivation, but can be mapped to a finite path.  In such cases, the path is 

locally compact.  It is also possible to define logics in which proofs correspond to paths that are of any 

ordinal length, though this stretches the concept of proof.  



 ON THE CONTINUUM 

© Peter Fekete 23 23 February, 2013 

lattice, ad infinitum.  The process of refinement may also be visualised in terms of the 

paradox of Zeno of the division of the line, to which it is related. 

 

1
2

1
4

1
8

1
16

0 1

 

 

There is a correspondence between this potentially infinite bisection of the unit interval and 

the number of atoms in the skeleton.  After m bisections we have a skeleton of 2m  atoms, and 

a lattice of 22
m

 elements.   

 If we allow this potentially infinite division of the unit interval then we obtain a dense 

subset, which is isomorphic to   in    0,1 .  The cardinality of the potentially infinite 

division of the unit interval is 0  since this may be placed in one-one correspondence with 

the set of all natural numbers,  .  So we have a potentially infinite division of the unit 

interval into 0  pieces.   

 6.1.1 Definition, locally compact 
A topological space is locally compact if each of its points has a neighbourhood with 

a compact closure. 

 6.1.2 Definition, globally compact 
A topological space is globally compact if every open cover has a finite subcover. 

Remark 

Thus by globally compact we mean what is often referred to as compact.  The term 

global is introduced in order to distinguish it from local compactness.   

6.1.3 Definition, atomic, non-atomic 
A lattice is atomic if it has a set of atoms; equivalently, if the maximal element, 1, is 

the join of all its atoms.  A lattice is non-atomic otherwise.  

 6.1.4 Results 
 1. Every globally compact space is locally compact. 

 2. In a Hausdorff space, every globally compact space is closed and bounded. 

 

Armed with these definitions, we must make two fundamental observations about the 

potentially infinite division of the continuum: - 

 

1. The resultant partition does not cover the unit interval, since there is always a 

neighbourhood of 1 omitted.  The partition produces a skeleton that is locally 

compact but not globally compact.  Every proper part of the space is closed and 

bounded, but taken globally the space is not closed and bounded.  The Heine-Borel 
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theorem does not apply to the space as a whole; the potentially infinite skeleton is not 

a model of the second order Axiom of Completeness.   

2. The correspondent derived lattice is non-atomic. 

 

Some further results about non-atomic Boolean lattices will be useful. 

6.1.5  Result 
Any countably infinite Boolean algebra is non-atomic.  

Proof 

Let B be a countably infinite Boolean algebra, that is of cardinality 0 , and suppose B 

is atomic.  Let A be the set of all atoms of B and by the isomorphism theorem 

 B AP .  A cannot be finite, for then B would be finite.  Therefore, A is countably 

infinite.  Then  AP  is an atomic Boolean algebra of cardinality  0
02 .  This 

contradicts the assumption that B is of cardinality 0 .  Hence, B cannot be atomic. 

 

The atomless lattice derived from the potentially infinite skeleton of 0  parts corresponds to 

to the atomless algebra, S, of (propositional) statement bundles.  In fact, this atomless 

structure is strictly not a Boolean algebra.  Being atomless it lacks a greatest element, 1, which 

in a Boolean lattice is the join of all the atoms.  But this is the only way in which it differs 

from a Boolean lattice; the structure is well defined and is called a generalised Boolean 

algebra. 

6.1.6 Result 
Every atomless Boolean algebra with more than one element must be infinite. 

Proof 

The unit 1 is different from zero, so there is a non-zero element 1p  strictly below 1; 

otherwise, 1 would be an atom.  Because 1p  is not zero, there  must  be  a  non-zero  

element   strictly  below  1p ;  otherwise, 1p  would be an atom.  Continue in this 

fashion to produce an infinite, strictly decreasing sequence of elements 

  1 21 ...p p . 

6.1.7 Result 
Any two countably infinite Boolean algebras (without atoms) are isomorphic. 

Proof 

It can be shown that the order of any finite Boolean algebras is 2n  for some n , 

and any two finite Boolean algebras with the same number of elements are 

isomorphic. 
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Let A, B be two countably infinite Boolean algebras.  Let   0 1 2, , , ...A a a a  and 

  0 1 2, , , ...B a a a  be enumerations of A and B respectively.  The proof will be a “back 

and forth” argument. 

The proof proceeds inductively on the order of subalgebras. 

For  0n  let     0 00,1  and 0*,1*A B ; then 0 0A B . 

For the induction step, suppose that the result is true for all k n ; that is k kA B . 

Suppose n is even. 

Let   1j na A A  be the element with smallest index j, and let nA  be the subalgebra 

generated by    1j na A . 

Then there is an element   1m nb B B  such that the subalgebra nB  generated by 

   1m nb B  is isomorphic to nA . 

Suppose n is odd. 

In this case select first   1m nb B B  to generate nB , and the claim is that there is an 

element   1j na A A  that generates n nA B . 

So the induction step holds and so    n nA A B B . 

Remark 

We should prove that both algebras pair off atoms in the respective finite subalgebras.  

(This proof is based on Komjáth and Totik [2000].  There is also a proof in Givant and 

Halmos [2002] p.135) 

 

The potentially infinite partition of the unit interval, its skeleton, has   non-atomic pieces.  

The derived lattice shall be denoted 2 .  In the literature, the distinction the potential and 

actual infinite is implicit only.  Authors do not systematically distinguish between   and  .  

In contexts where the distinction is essential, we see in place of   the symbol  .  Thus, in 

the literature the non-atomic countably infinite generalised Boolean algebra is denoted 2 .  

The symbol  2  is also used.   

6.1.8 Result, The potential and actual infinite (+)18 
Analysis distinguishes between the potential and actual infinite. 

 Proof 

The structure 2  is locally compact and being open is not globally compact.  Its 

skeleton is a locally compact potential infinity.  The Cantor set 2  is globally compact 

and actually infinite. 

 
18 The mark (+) indicates a result in this paper that to the best of my knowledge has not been stated in any 

other paper. 
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6.2 The character of the atomless countably infinite generalised Boolean algebra 

The non-atomic countably infinite generalised Boolean algebra, 2 , has “paradoxical” 

properties.  As it is non-atomic, there is no simple way to picture the partition of the unit 

interval on which it is based.  Unlike the finite case, we cannot draw the lattice.  To do so 

would require a complete set of atoms, the very thing we do not have.  However, let us 

suppose that we have a set of what we shall call notional atoms comprising some floor of the 

lattice, 2 .  Because the lattice is non-atomic, it is always possible to lower the floor of the 

lattice; this corresponds to a refinement of the partition.  Nonetheless, when we do so the new 

lattice is a copy of the old one.  The lattice 2  may be embedded into another lattice that is a 

copy of itself.  I call this the flip-flop property of the lattice, 2 .  It is a weird property, but 

not a formal paradox.  This property arises from the fact that no partition of the unit interval 

into   pieces is actually possible; here   represents a potential infinite, that is, the 

possibility of continuing the process of partition indefinitely. 

 

7. The actually infinite skeleton of the continuum, and the one-
point compactification 

7.1 The one-point Alexandroff compactification 

It is at this point when we must consider how to divide the interval   0,1  into an actually 

infinite number of partitions equinumerous to   that the tangible distinction between the 

potentially infinite   and the actually infinite   makes a difference of momentous 

significance.  The collection   is literally incapable of dividing the interval   0,1  into an 

infinite number of segments for the reason that it represents a potential infinity.  If we start 

numbering the partitions we will never have done, because   is unbounded above.    is a 

locally compact [Definition 6.1.1] but not globally compact [Definition 6.1.2] set.    0,1  is 

bounded.  A partition of   0,1  by   segments is impossible because we are trying to divide 

the unbounded into the bounded.  

 The partition of   0,1  requires a 1-point Alexandroff compactification [Definition 

4.1.2].  When the space is Hausdorff, as   is, the compactification is called the Stone-Cech 

compactification.   

 

7.1.1 The Stone-Cech compactification 

A compactifiction Y of a locally compact Hausdorff space X is a Stone-Cech 

compactification of X if every continuous mapping from X into a compact Hausdorff 

space Z can be extended to a continuous mapping from Y into Z.  (From Givant, Steven 

and Halmos, Paul [2009]  p. 413.) 
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Since the Hausdorff condition follows from the Commpleteness Axiom, the Stone-

Cech compactification is a consequence of this axiom – it is another expression of the Heine-

Borel theorem.  The half-open interval 0,1  is locally compact but not closed or bounded 

above.  In order to close it, we need to adjoin to it the neighbourhood of the point 1, here 

represented by   .  That is, we may write,         0,1 0,1 .   

The interval   0,1  is the sub-manifold of   upon which we are currently attempting 

to define a scaffold (skeleton) or partition of actually   parts.  A subdivision of 0,1  would 

correspond nicely to a partition by   parts precisely because the sub-manifold is open and 

unbounded just as   is unbounded.  But    is insufficient to partition   0,1 .   

7.1.2 Result 
Every discrete space is locally compact, but not compact if infinite.  (Bourbaki 

[1989a] p. 90) 

 

Corollary 

  is locally compact but not compact. 

 

The standard partition may be found in any appropriate text.  I take it from Davey and 

Priestley [1990] (p.197): - 

7.1.3 One-point compactification of a countably discrete space 

Let       . 

Let  U . 

Let T be the topology on   given by 




   

  if  
 and  is finite

U
U T

U U
 

This can be shown to be a topology.  (See Givant and Halmos [2009]).  A subset 

 V  is clopen (both closed and open) iff V and   V  are in T.  The clopen 

sets of   are the finite sets not containing   and their complements.  It can 

be shown that   is totally disconnected.19

 

 
19 Givant and Halmos write: “A less trivial collection of examples consists of the one-point 

compactifications of infinite discrete spaces.  Explicitly, suppose a set X with a distinguished point 0x  is 

topologized as follows: a subset of X that does not contain the point  0x  is always open, and a subset 

that contains 0x  is open if and only if it is cofinite.  It is easy to verify that the space X so defined is 

Boolean.  For instance, a subset of X is clopen if and only if it is either a finite subset (of X) that does not 

contain  0x  or else a cofinite subset that contains 0x ; indeed, a subset and its complement are both 

open just in case one of them (the one that contains 0x ) is cofinite.  The clopen sets form a base for the 
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This definition results in a compactification of  .  This derives from the definition of the 

topology on  . 

 

U  U

1 2 3 4 

 

 

The topology is defined in such a way that, if an open set, U , covers    then what remains, 

 U , must be finite; hence every open cover has a finite subcover.  This mirrors the 

construction of the finite cover in the Heine-Borel theorem. 

7.2 Being precise about the skeleton 

There is a subtle and very important point to make here.  Consider the skeleton of the unit 

interval comprising just four atoms: - 

 

0 1

{1} {2} {3} {4}  

 

By analogy in our actually infinite partition of the unit interval, the atoms should not 

be labelled, 1, 2, 3, ...  , but rather,        1 , 2 , 3 , ... , .  As a model of the continuum, in the 

expression  1 , it is the whole set  1  which represents the atom of the partition; the symbol 

1 denotes the content of that atom; this content is the individual of which the set is its 

collection.   

So        is not the skeleton of the closed unit interval.  We will designate the 

correct skeleton by                        1 , 2 , 3 , ... 1 , 2 , 3 , ... ,  where the “point at 

infinity” representing the neighbourhood of 1 in the unit interval is designated   .  The 

members of this skeleton,        1 , 2 , 3 , ... , , comprise an unordered set, and the symbol  1  

 
topology because every open set that contains 0x  is clopen, while every open set that does not cotnain 0x  

is the union of its finite subsets.” (Givant and Halmos [2009] p. 301, where the discussion continues.)  We 

also have Alexandroff’s Theorem: Let X be a locally compact space.  (1) Then there exists a compact space 

X  and a homeomorphism f of X onto the complement of a point 0x X .  (2) If 
X  is another compact 

space such that there is a homeomorphism 1f  of X onto the complement of a point in 
X , then there is a 

unique homeomorphism g of X  onto 
X  such that  1f g f . [Source is Bourbaki [1989a] p. 92] 
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is merely a label for an atom of this skeleton.  It is a label for a portion of space.  This set has 

to be unordered because we wish to construct a Boolean algebra over it.  But since we wish to 

use this skeleton as a model of the arithmetical continuum, we must also impose an external 

relationship of order as well.  So we regard           1 , 2 , 3 , ... ,  as internally unordered 

but externally ordered and hence externally isomorphic to     1,2,3, ... , .  The topology of 

the skeleton is illustrated by this diagram: - 

 

U  U U U 

{1} {2} {3} {4} {   }

  

 

 Since the unit interval,    0,1 , is the complete algebra derived from its skeleton, 

which here forms its countable dense subset, the compactification of the unit interval follows 

from the 1-point compactification of its skeleton,           1 , 2 , 3 , ... , .   

7.2.1 Definition, derived set (+) 

We denote the complete Boolean algebra by 2 that is derived from the one-point 

compactification of the continuum,           1 , 2 , 3 , ... , , the Derived set. 

7.2.2 Theorem (+) 

The Derived set is homeomorphic to the continuum,  . 

(See section 18.2 for a discussion and demonstration of this result.)   

 

 Thus we have a distinction between the Cantor set, 2 , and the Derived set, 2 .  The 

Cantor set is a representing set for the continuum because it has continuum many points and 

shares many common properties with it.  However, it is not a continuous set and so cannot be 

homeomorphic to the continuum.  The Cantor set represents a family of models that can be 

distinguished by combinatorial set theoretic principles.  Among these combinatorial 

structures there is just one that is entailed by the Axiom of Completeness.  This is the 

combinatorial structure determined by the Derived set, 2 . 

Although   and   are equinumerous, both having cardinality 0 , it is a mistake to 

conclude that they represent the same structure in regard to the partition of the interval   0,1  

into actually   parts.  The derived set of   is the Cantor set, 2 . As a skeleton of the 

arithmetical continuum, a partition of   parts is wholly ambiguous, which is why the 

question, “How many points are there in its derived set?” is unanswerable.  To resolve the 

continuum hypothesis we need a definite model of the continuum that is one that is 

homeomorphic to it.  We must also keep in mind the distinction between a chain and an 
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antichain.  Not only does the structure           1 , 2 , 3 , ... ,  represent an actually infinite 

partition of the unit interval, as opposed to a potentially infinite one, it also represents that 

partition as having an exogenous relation of order, so that we take its atoms, 

       1 , 2 , 3 , ... ,  in succession as numbering individual segments of the unit interval taken in 

succession.  To recap, we must actually “forget” this additional structure when we generate 

the lattice because otherwise when we derive the lattice from the skeleton we will obtain just 

another chain.   

Hence, we need yet a third notion of the infinite, to denote a potentially infinite 

collection of unordered atoms – a potentially infinite antichain [Definition, 5.3.1].  I shall 

denote this collection by  ;   is collection of 0  elements without any order relation upon 

them. 

 7.2.3 Summary, three distinct notions of the countably infinite (+) 
   Actually infinite chain of ordinals. 

   Potentially infinite chain of natural numbers. 

   Potentially infinite antichain of unordered elements. 

 

The status of   and   as sets is disputable.  According to the popular theory that every 

mathematical entity is a set, they must either be sets or just not exist.  Levy [2002] does not 

include   in his text at all, which suggests that he denies that it exists as a separate entity 

from  .  However, we can see that the one-point compactification of the discrete space   

makes no sense at all if   does not exist and the existence of  as distinct from   is 

implicit in the entire theory of Boolean lattices.  As intensions  ,  and  , we have distinct 

concepts: - 

 7.2.4 Distinct variants of the skeleton of the unit interval 
1.   is the least limit ordinal – an actually infinite collection of all finite 

ordinals:    0,1,2,3, ... .  There is no   in this set.20  This shall be 

called the ambiguous skeleton of the real line. 

2.           0,1,2, ... ,  is the one-point compactification of the 

discrete space   and a model of the actually infinite partition of the 

interval   0,1  in which the symbols 0, 1, 2, ...   are arbitrary labels for 

the atoms of the skeleton.  We call this the skeleton of the discrete 

space. 

 
20 The distinctions between  ,  and  raise the question of non-standard models of arithmetic in 

which we see additional elements tagged onto the set   and making the resultant model non-categorical 

for  .  This relates to  -consistency.  For a description of non-standard models of arithmetic, see Boolos 

and Jeffrey [1980] Chapter 17. 
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3.                1 , 2 , ... ,  is the partition of the interval   0,1  in 

which         1 , 2 , 3 , ...  represents a potentially infinite antichain. 

The skeleton,       is intrinsically unordered but, as a model of 

the skeleton of the continuum, it must also be well-ordered extrinsically 

by placing it into one-one correspondence with elements of  .  This 

shall be called the canonical skeleton of the continuum. 

 

This model of the arithmetical continuum assumes the Axiom of Choice.  This is because 

               1 , 2 , ... ,  which acts as the skeleton for the arithmetical continuum 

must simultaneously be externally well ordered.  This external well ordering is supplied by the 

Axiom of Choice. 

 

 7.2.5 The Axiom of Choice 

 Every set can be well-ordered.21 

 

We observe that the canonical skeleton of the continuum contains at least one 

urelement and is a non-standard model of arithmetic.  Whatever the labels      1 , 2 , 3 , ...  

represent, and for the present we may think of them as denoting intervals, the label   , 

standing for the infinitesimal neighbourhood of 1 in the unit interval, is something quite 

different. 

7.3 The relationship of the Axiom of Choice to the Axiom of Completeness 

In textbooks of set theory there is no formal treatment of the Axiom of Completeness.  For 

example, Levy [2002] does not mention it.  However, the Completeness Axiom is implicit 

everywhere and an equivalent to it is needed whenever a recursive potentially infinite process 

needs to be completed, just on analogy with the Dedekind cut.  Whenever this is required it is 

always the Axiom of Choice that is invoked within the context of ZF theory as a whole, which 

already has the Axiom of Infinity.  But the Axiom of Infinity is not enough to supply 

completeness arguments.  Consider the following remark from Givant and Halmos [2009]: - 

 

There is a close connection between complete ideals and the “cuts” that play a 

crucial role in Dedekind’s classical construction of the real numbers from the 

rational numbers. (Givant and Halmos [2009] p.206) 

 

 
21 This is actually the Well-ordering Principle which is equivalent to the Axiom of Choice.  A set that is 

well-ordered has a first element.  Since every finite set can be well-ordered the Well-ordering Principle is 

needed for infinite sets.  It is not intuitively obvious that any infinite set can be ordered so as to have a 

first element. 
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The complete ideals that they discuss can only be established on the basis of the Axiom of 

Choice. 

7.3.1  Result, The one-point compactification requires the Axiom of Choice (+) 

The definition of the topology T on   [7.1.3. above] makes an implicit use of 

the Axiom of Choice. 

Proof 

The construction: - 

   and  is finite  is open in U U U T  

requires that we are able to pick out the element   from     0,1,2,3, ... ,  

which since it is an actually infinite set is not possible unless we have a choice 

function, or equivalently, unless   is an well-ordered set.  The collection 

       is an unordered anti-chain.  It requires the Axiom of Choice to give 

it an alternative description as an ordered chain. 

 

On the continuum the Axiom of Choice therefore derives its validity from the second-order 

Axiom of Completeness and is a consequence of it.  It is part of the necessary first-order set 

theoretic gadgetry required to construct a model of the arithmetical continuum.   

 By the same token, however, the model     0,1,2,3, ... ,  is a non-standard model 

of arithmetic.  It is not categorical for arithmetic.  The categorical model of arithmetic requires 

just   0,1,2,3, ...  from which all elements that are not numbers are excluded.  As a model 

of the continuum                1 , 2 , ... ,  does not contain any numbers; it contains 

an infinite collection of a base partition of atoms of the unit interval which forms a dense 

subset in the arithmetical continuum.  It is an exogenous fact that this base partition may be 

placed in one-one correspondence with the set     0,1,2,3, ... , .  That 

        1 , 2 , ... ,  must be exogenously well ordered follows from the fact it is a 

continuum, and the correspondent first-order set theoretic interpretation of the arithmetical 

continuum must also have a tool for this.  This tool is the Axiom of Choice. 

7.3 Representation of the point at infinity 

Since there is an exogenous relation of order on the skeleton         1 , 2 , ... ,  it is usual 

to represent the point at infinity     as a countably well-ordered set that well orders the 

antichain,         1 , 2 , 3 , ... .  Hence we may also write the point at infinity as         , 

the 1-point compactification of the discrete space as          1,2,3, ... ,  and the one-

point compactification of the skeleton of the real line as       .  This displays these 
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structures as well ordered sets.  We will subsequently display a very close relation between the 

atom     and Mahler’s number:  0.12345678910111213141516 ...M  [Section 16.4.1] 

7.4 Implications for set theory as a model of number theory 

By the arguments above the Axiom of Choice is a valid principle in the context of the set 

theory of the real line, but it does not follow that it is valid in the context of number theory, 

since the arithmetical continuum is not a categorical structure for number theory.  It may be 

observed that in set theory with choice (ZFC) the Axiom of Choice ensures that every set is 

well ordered.  In the absence of the Axiom of Choice the principle of transfinite induction 

does not apply to all sets: the axiom of infinity alone is not sufficient to extend the principle 

of induction to all sets.  In number theory there is a single principle of complete induction 

that categorically applies to all natural numbers; on the arithmetic continuum there is an 

analog principle of transfinite induction that is entailed by the Axiom of Choice.  Therefore, 

the Axiom of Choice is closely related to the principle of complete transfinite induction on 

actual infinite collections and it derives its validity from the model of the arithmetical 

continuum.  Since it is true that in the absence of the Axiom of Choice, the principle of 

transfinite induction does not apply to all sets, it is not correct to regard the principle of 

transfinite induction as stronger in its deductive consequences to the principle of complete 

induction; the two principles are not comparable.  Number theory is equipped with a principle 

of complete induction defined on the entire potentially infinite collection of natural numbers; 

the arithmetical continuum is equipped with a principle of complete transfinite induction 

defined on the entire collection of actually infinite sets, but this principle not only requires the 

regular axioms of ZF, but also specifically the Axiom of Choice. 

 The well ordering of the set of real numbers,  , may be derived from the well-

ordering of the skeleton         1 , 2 , ... , .  Subject to the Axiom of Completeness, the set 

of all real numbers may be well-ordered. 

 

 



 ON THE CONTINUUM 

© Peter Fekete 34 23 February, 2013 

8. The derived set of the one-point compactification 
 

We will use the following diagrammatic representation of the Derived set, 2 , as a model of 

the arithmetical continuum, and it will be important to explain its features in detail. 

 

0

1

2< F (  ) 

2C (  ) 





< 

Skeleton of atoms.

Skeleton of co-atoms.
 

  

{1}, {2}, {3}  ...

  {1},    {2}, ....

{  }

 

 

The structure of this derived set of the actually infinite skeleton   has many fascinating 

properties that require deep investigation.  For the present we list only those that we can infer 

from the information we have to hand. 

8.1 The distinction between the Derived set and the Cantor set  

The whole diagram may be taken as a representation of the entire Derived set, but it is once 

again very important to emphasise from the outset that the principle “identical up to 

isomorphism” does not apply in this case.  The Cantor set, 2 , as a model of the continuum is 

undetermined.  The skeleton       has as many members as  , but it is not an 

equivalent order type to it.  

   0,1,2,3, ...  

               1 , 2 , ... ,  

The set of all ordinals,  , has no last member, whereas the actually infinite skeleton,   has 

a last member,   , though even this fact is not internal to the structure, but external to it, 

being forced upon us by the need to look on    as a label for the neighbourhood of 1 in the 

unit interval,   0,1 , thus placing it after all the other labels      1 , 2 , 3 , ...  which correspond to 
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intervals within the disjoint neighbourhood of 0 in   0,1 , which we can denote 0,1 .    is 

order-isomorphic to  1 . 

The distinction that we draw here, between the Cantor set, 2 , and the derived set of 

the skeleton,   
  P 2 , must be correct.  At the least we know that the Cantor set is not 

homeomorphic to the arithmetical continuum, since it is nowhere dense and totally 

disconnected.  We will prove that Derived set,   
  P 2 , is homeomorphic to the closed 

unit interval,   0,1 .  (Section 18.2)  It is because the Cantor set is not homeomorphic to the 

continuum that the cardinality issue has hitherto remained unresolved. 

8.2 The skeleton is not homogeneous 

The skeleton,  , contains a potentially infinite proper subset,         1 , 2 , 3 , ... .  As 

members of the actually infinite skeleton,  , the labels      1 , 2 , 3 , ...  together with   , 

represent atoms of the Derived set,   
  P 2 .  Since there are 0  of these the      1 , 2 , 3 , ...  

are not points of the continuum, but collectively comprise a dense subset of the continuum, 

isomorphic to  , forming a basis for the arithmetical numbers [Section 9].  However,    does 

not belong to this basis, but is an additional atom representing the neighbourhood of 1.  

Therefore,    and      1 , 2 , 3 , ...  are not homogeneous.  The collection      1 , 2 , 3 , ...  may be 

placed externally in one-one correspondence with the natural numbers: - 

        1 1 2 2 3 3 ...  

But    cannot be added to this list.  The natural numbers have no last member, so   , as the 

last member of  , cannot be included.  This makes    into an urelement.    is a non-

standard model of arithmetic. 

    ;    it is not an element of the dense subset of the continuum.  This may be 

proved: if it denotes member of the dense subset then it becomes identical to one of the other 

members, so we can write      q  for some q .  This is a contradiction, because this is 

precisely the possibility that the actual infinite skeleton excludes.   

 In the one-point compactification, we adjoin    to the potentially infinite skeleton 

         1 , 2 , 3 , ...  in order to complete it. 

8.3 The ideal of all finite subsets 

Within the derived set we have an ideal of all finite subsets of          1 , 2 , 3 , ... .  This is 

denoted   FFin  or  F , where F is an operation of taking all finite subsets; Fin is 

standard in the literature, as is the representation 2  to which it is isomorphic.  Evidently 

       F F F  because the finite subsets of  ,  and   are the same.  This also permits 



 ON THE CONTINUUM 

© Peter Fekete 36 23 February, 2013 

the identification Fin 2  and Fin as the potentially infinite proper sub-tree of the actually 

infinite Cantor set, 2 . 

 Fin is a family of ideals, a poset based on a supraset relation.  An example of one 

chain in this family is the following: - 

          1 1,2 1,2,3P P P  

It is a poset because we also have other chains in the family, for example: - 

          1 1,3 1,3,4P P P  

This makes it clear that Fin has no maximal element m Fin .  So Fin is incomplete and there 

is no join in Fin representing the union of all finite subsets of  .  Nonetheless, the Bolean 

representation theorem entails that there is a maximal ideal, which we will denote by  .  In 

fact, within the derived set,   
  P 2 ,   is not only a prime ideal but also a principal one.  

This is because         1 , 2 , 3 , ...  is the complement in 2  of   :     .  Hence, since 

   is an atom,   is a co-atom or, equivalently, principal element of the prime ideal of all 

finite subsets of the skeleton.  Thus we have    P .  The relationship of Fin to   is as   

to  .   Fin is the interior of  .  Fin is open,   is closed and bounded.    is the closure of 

Fin. 

8.4 The filter of all cofinite subsets 

There is also a filter,   CCofin , within the derived set comprising of all infinite subsets of 

   0  obtained by set difference of   and members of         1 , 2 , 3 , ... .  These may be 

represented as co-finite subsets of   and may be enumerated as          1 , 2 , 3 , ...    

   is an atom of the skeleton, hence it has a filter:  filter . This filter contains every 

cofinite subset of the derived set, so we may write,      C filterCofin .  This also displays 

this filter as a principal filter within the Derived set. 

8.5 A principle of complementarity 

We now encounter a seemingly paradoxical property of the Derived set – to do with the way in 

which the potential and actual infinite combine.  Since Fin is unbounded in itself, it is non-

atomic.  Its cardinality is 0  and we have already demonstrated that there can be no atomic 

Boolean algebra of this cardinality.  This forces us to look on the members of the skeleton of 

the arithmetical continuum in two different ways, which we may call a principle of 

complementarity.  This is to do with how we interpret the members of         1 , 2 , 3 , ... . 
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8.5.1 The actual and atomic 
From the point of view of the derived set as a whole (the continuum), the members of 

        1 , 2 , 3 , ...  together with    are atoms.  This means that they cover the 0 of 

the lattice, and between any given member  n  of the skeleton and 0 there are no 

other elements of the lattice.  This makes   into a Boolean algebra in its own right, 

with maximal element, 1 .  But for that to be the case we must regard 

        1 , 2 , 3 , ...  as a completed totality, an actually infinite collection.  So this has 

a claim to externally identify         1 , 2 , 3 , ...  with  .  It is an actually infinite 

collection that has no infinite subsets.   In addition to   we have from this viewpoint 

one other atom,   , so this is a skeleton of order type  1  and of cardinality 0 .   

8.5.2 The potential and non-atomic 
From the point of view of the potentially infinite part of the skeleton, from within 

        1 , 2 , 3 , ... , the members are not atoms, because there are no atoms in this 

structure.  They represent notional atoms, a “snapshot” of the structure, or a part of 

that structure, and implying that every meet of every combination of these notional 

atoms is allowed.  So the floor of the lattice may be lowered.  We may also call this 

floor a pseudo basis for the topology of the continuum.  It is a pseudo basis because 

it is not complete and any two putative members of the basis have a non-empty 

intersection.   The function of this potentially infinite skeleton is to provide a 

countably dense subset of the continuum, so from this perspective this is a set of 

order type,  .  It is countable, dense and has no end-points.  What this also means is 

that from within Fin we cannot visualise the set         1 , 2 , 3 , ...  as linearly ordered 

starting with the “first” notional atom next to 0 in the interval   0,1 .  The skeleton 

embraces the idea of a procedure for systematically generating the notional atoms, 

but this is a process that cannot be completed, so that between  1  and 0 in the 

interval it is always possible to introduce a more refined interval. 

8.6 Quotient structures 

Corresponding to the two perspectives described above, there are two quotient structures: The 

actual, 



2

, and the potential, 
 

 
2 2

2 Fin
.   

8.6.1 The actual quotient structure 

There are 0  cosets in 



2

, each of which corresponds to a prime, principal ideal in 

the derived set.  These principal elements are the co-atoms of the algebra, with labels, 
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          1 , 2 , 3 , ... , .  Each corresponds to an open set of the unit interval 

from which one point has been removed.  For example,    1  could represent 

something like this: - 

{1}

1
2

0 1

) (

{  }

 1
2{  } 1

2[   )0,  1
2

,1
 

 

The cosets of 



2

 can be written:                   1 , 2 , 3 , ... ;    P  

is itself the zero of this quotient algebra, and     . 

The collection of co-atoms comprises a Boolean space, and is specifically the 

Stone space of the Boolean algebra that is the dual to the Derived set.  It is the dual 

algebra generated by taking the co-atoms as generators.22   

 8.6.2 The potential quotient structure 

It is a standard result that 


 
2 2

2 Fin
 is non-atomic (see below); we may also show 

that it has 2  cosets.  The cosets may be written,  xFin , where x is an infinite subset 

of the actually infinite skeleton.  We write this, x .  The cosets of 
2

Fin
 are prime 

ideals arising from subtracting real numbers from the unit interval.  They may be 

represented as    where   is the unit interval and   is a real number, where 

there are 02  reals.  So there are 02  prime ideals, and, dually, 02  ultrafilters, each 

corresponding to a real number.  The dual algebra of 
2

Fin
is the quotient algebra of all 

ultrafilters in 2  factored through by Cofin.  
2

Cofin
 is the actually infinite collection 

of all real-number generators.  The atom    belongs to this collection.  I shall call the 

collection of all such ultrafilters the boundary of the Cantor set.  The boundary 

comprises all ultrafilters with representation,  filter , where     2 , but     2  

together with all prime ideas, with representation       2P .  The collection of 

ultrafilters is also called the collection of generic ultrafilters. 

 
22 This conforms to the Stone Representation Theorem. 
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8.6.3 Result, the atomless quotient algebra 

The quotient algebra 
 

 
2 2

2 Fin
 is atomless. 

Proof 

Let       0x  denotes any equivalence class in 




2

2
; that is 



  x
2

2
.  Then x 2  is an 

infinite set.  Since x is an infinite set it contains a countable number of infinite subsets 

that can be arranged in a chain.  That is, there is also an infinite set y x  such that 

x y  is infinite.  Since y is infinite 
 





 0y
2

2

.  Since y x  we have       y x .  Since y is 

infinite  x y 2 ; hence  x y
2

 and       x y .  So we have 
 





       0 y x
2

2

.  That is, 

  x  is not an atom.  By generalisation, no equivalence class 


    0x
2

2
 can be an 

atom.  In 




2

2
 the equivalence classes are formed by taking any infinite set x and 

adding to that set any finite set (that is, any set  r 2 ; that is,     x x 2 . 

Remark (+) 

If we replace 
2

Fin
 in this argument by the atomic 




2

 then M is a maximal element in 

a chain and so stops the crucial line the argument. 

8.7 Complimentarity and collapsing cardinals 

The paradoxical situation complimentarity requires further clarification.  We have two 

structures:  

 

Fin The set of all finite subsets of  .  Isomorphic to 2  with cardinality 0 . 

2  The Derived set.  Isomorphic to the Cantor set, 2  and with cardinality 02 . 

 

The Derived set is the completion of Fin but from within Fin this is not known.  Fin perceives 

its notional atoms as comprising a pseudo-basis for the continuum, so that there are joins 

above this basis and meets below it.  So Fin extends in both directions to up-sets (ideals) and 

down-sets (filters).  It perceives the filters as dense and open, so that within the filters there 

are infinitely descending chains.  It perceives the pseudo-basis as a set of order-type  , which 

is the order-type of the rationals.   
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{1}, {2}, {3}  ...

0

Skeleton of notional
atoms comprising a
pseudo-basis of

order type 

MEETS

JOINS

Fin

Filters are open and 
dense.  Descending
chains are infinite

The true floor of the lattice would

comprise 2      ultrafilters corresponding

to points  x 

0

Generalised
Boolean algebra
with no maximal
element, 1

 

 

If the psuedo-basis could be completed, then it would have an actually infinite collection of 

atoms, but the “point at infinity” here representing the neighbourhood of 1 in the unit 

interval,   , would still not be included in this collection, as it is not homogeneous with it.  

So from within Fin the continuum has a basis formed by adding one atom to a complete basis 

of   atoms, and there is no bijection within Fin between this fictional basis of   atoms for 

Fin and the complete skeleton for the unit interval.  Hence, Fin perceives the skeleton of the 

continuum has having 1  atoms corresponding to its 2  ultrafilters; it sees the atoms as 

points and so accepts the Continuum Hypothesis,   12 .  It perceives the ultrafilters as real 

numbers, that is, points of the arithmetical continuum.   

 The Axiom of Completeness allows us to complete the skeleton of the continuum to 

provide a basis of order-type  1 atoms.  This basis for the Derived set is now orthogonal, 

meaning there are no meets of atoms.  Since there are  1 atoms in the basis, and 2  points 

of the continuum, the Derived set perceives the basis as a set of sets of real numbers23, and 

not as real numbers themselves.  So the atoms are populated with real numbers rather than 

equated with them.   

8.8 What is a real number? 

It is accepted in first-order set theory that a real number corresponds to an infinite subset of 

 .  There are 2  such subsets. 

 
23 As sets of sets are added, this confirms that the Axiom of Completeness is second-order.  It shows that, 

from this perspective, we cannot create a categorical structure for the continuum without second-order 

properties.  Having a countable dense subset is interpreted as a second-order property, that is affirming 

the existence of sets of sets. 
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 Let   1 2 3, , , ...x x x x  be one such subset.  However, consider carefully what this 

means.  A set is a disjunctive list of its members corresponding to a join of singleton sets: - 

 

                      1 2 3 1 2 3 1 2 3, , , ... ... ...x x x x x x x x x x  

 

When we consider Fin we identify a dense subset of the continuum and label its notional 

atoms as      1 , 2 , 3 , ...  this corresponds to some linear ordering of the dense subset, though 

it does not have a least element and is therefore not a well-ordering.  Thus it is only a notional 

floor of the lattice and a pseudo-basis for the topology on the continuum. This means that 

intersections of these sets exist as do their correspondent lattice meets: - 

 

                  1 2 3 ... 1 2 3 ...  

 

Thus, in Fin there is a collection of 2  ultrafilters corresponding to infinite meets in the 

lattice.  It is these that we identify with the real numbers.  To summarise: - 

 

1. In the Derived set we identify real numbers with infinite subsets of   corresponding 

to actually infinite joins in the lattice. 

2. In Fin we identify the real numbers with ultrafilters corresponding to potentially 

infinite meets of its notional atoms. 

 

Strictly speaking this could be characterised as really confusing, because in one context we 

talk of joins and the other we talk of meets.  We have to be clear as to what we mean: - 

 

1. In the Derived set real numbers are equated with the principal elements of ideals 

corresponding to infinite joins of atoms.  Real numbers in the Derived set are 

disjunctive sets.  But not all joins correspond to prime ideals.  A prime ideal is 

characterised by a principle element of the form    n  where n , together with 

 .  There 0  prime ideals.  There are 2  ideals in the Derived set corresponding to 

real numbers 

2. In Fin real numbers are equated with ultrafilters, which are non-principal, but 

correspond to infinite meets of notional atoms.  Real numbers generated by Fin are 

conjunctive sets.  There are 2  such ultrafilters.  Every ultrafilter corresponds to a 

real number generator. 

8.9 The boundary 

Another difference between Fin and the Derived set concerns the differing ways in which 

these two structures interpret the boundary between Fin and Cofin of the Derived set.  From 

within Fin there is no filter of cofinite subsets; Fin has no knowledge of Cofin.  Fin perceives 
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that there is a boundary that lies wholly outside Fin to which it imagines that its ultrafilters 

are forever striving to reach.  It interprets the boundary as populated with atoms 

corresponding to these ultrafilters, and concludes that if the ultrafilters could be completed 

there would be 2  of them, each defining a point of the boundary. 

 From the perspective of the Derived set, the boundary between Fin and Cofin lies 

wholly within the Derived set.  The Derived set has a complete skeleton of 0  atoms, and 0  

co-atoms.  By recursive, potentially infinite, processes of addition of finite elements to finite 

sets we can never reach an infinite set, and by subtraction of finite elements from infinite sets 

we can never descend to a finite set; hence, the Derived set perceives that the boundary 

between Fin and Cofin is a gap.  The gap can never be reached from within Fin by any 

potentially infinite process of joins (unions) of atoms, creating subspaces of the continuum, or 

by meets (intersections) of co-atoms.  Neither the joins of atoms nor the meets of co-atoms 

can define points; they define only subspaces.  Hence, while there are 2  points on the 

boundary these all belong to a gap that can never be reached from within Fin or Cofin.  By 

taking joins and meets of actually infinite   atoms we reach the boundary as a part of the 

Derived set.   

8.10 Canonical extension of Fin 

8.10.1  Lemma, canonical extension 
If B is a canonical extension of a Boolean algebra A, then the distinct atoms in B are 

precisely the infima of the distinct ultrafilters in A.  (For the proof see Givant and 

Halmos [2009], Lemma 1, Chapter 23, p.195.)24 

Remark 

There are also existence and uniqueness theorems for the canonical extension.  The 

canonical extension is atomic, complete and compact. 

 

Fin is a generalised Boolean algebra rather than a Boolean algebra, but, subject to the Prime 

Ideal theorem it may be extended to a maximal ideal,  , which is a Boolean algebra.  The 

lemma tells us the atoms of this canonical extension are the infima of the ultrafilters.  Since 

there are  02c  ultrafilters in Fin and  0  ultrafilters in  , the canonical extensions of 

these two structures are not identical.   

 

1. Canonical extension of Fin 

Let 



22 2  represent the algebra with the skeleton comprising of all points 

      0,1 .  The ultrafilters of the potentially infinite lattice, 2 , correspond to the 

real numbers       0,1 .  The atoms of 



22 2  are the real numbers of the 

 
24 I assume here, without proof, that this applies also to a generalised Boolean algebra, which lacks a 

topmost element, 1. 
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continuum corresponding to the infima of the ultrafilters in Fin.  



22 2  is the 

canonical extension of Fin.  We will call 



22 2  the Canonical extension. 

2. The canonical extension of  . 

 This is the derived set 2 ; the ultrafilters of   are the atoms of 2 . 

 

The Derived set, 2 , is embedded in the Canonical extension, 



22 2  of Fin.     is an 

atom of both the Derived set and the Canonical extension ; and   is a co-atom of both; 

otherwise, the atoms of 2  are represented by the skeleton      , and the atoms of 




22 2  by       :   iff  filter  is an ultrafilter in Fin .  We may show that    is an 

ultrafilter of Fin because    is the meet of all notional atoms in Fin; when the set of notional 

atoms in Fin is completed, we obtain the actually infinite   .  This also confirms that 

       . 

It is the Axiom of Completeness that asserts the existence of a least upper bound to 

every Dedekind cut, or equivalently, in the Nested Interval Theorem, of a real number that is 

the content of every member of an actually infinite sequence of nested intervals.  Denoting 

such a sequence by  filter , we see that we can place every ultrafilter of Fin in one-one 

correspondence with a point of the arithmetical continuum,   .   

8.11 “Identity up to isomorphism” and the prolixy of set theory 

It is an error to assume that the Cantor set has an unambigous structure, as the prolixy of 

solutions to the continuum question demonstrates.  If it is possible to have any solution 

consistent with ZFC to the equation, 
2 , then it follows that the structure of 2  is under-

determined. 

 It is not difficult to see why this must be the case.  The axioms of ZFC are insufficient 

to determine the answer to the problem of the continuum.  The power set axiom generates 

ambiguously in one-step the totality of all functions,   2 .  The other axioms, particularly 

the replacement axiom, provide tools for generating this totality from below, but there is an 

insufficient overlap between the two collections of tools, so the structure is under-determined. 

 Already, in the definition of the power set axiom on   2 , and in Cantor’s justly 

famous proof that the cardinality of     2P , we have the assumption that a totality of all 

functions   2  exists.  In other words, we assume the existence of an actual infinity.  If the 

terms “all” or “totality” in   2  refer only to a potential infinity, then the collection   2  is 

fully determined from below by ordinal exponentiation.  That is to say, if there is no actual 

totality of all functions, but the totality of all functions refers only to the possibility of 

generating one more function in a recursive sequence, then the answer to the cardinality 

question is just     02 card .  Granted only potential infinities, then the whole apparatus 
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of transfinite ordinals:  0 1, , ...  becomes superfluous, for then there is only one infinity – the 

potential infinite – and only one infinite cardinality – the cardinality of the potential infinite, 

and the question of the continuum is unambiguously solved. 

 We have already argued that the concept of the potential infinite is inadequate to 

provide a suitable model of the continuum for science, which does require the actual infinite 

and the preconceived totalities of all real numbers and all functions:   2  and    giving 

rise to Cantor space, 2  and Baire space  , which may both be taken as representing sets of 

the collection of all real numbers.  It was the struggle of C19th analysis to demonstrate the 

need for the actual infinite. 

 However, the question of ambiguity immediately surfaces, for then it is not possible 

to say what a topologically invariant structure to the Cantor set, 2 , would look like until 

further axioms are provided to define that structure.  Until that is done 2  is a mere symbol 

representing the image of the power set operation on the totality of all mappings:   2  and 

nothing more. 

 The ambiguity of 2 can also be seen from consideration of its tree structure. 

 

P 2 (  ) =  
 

 

Here the dots represent the fact that the branches of the tree are infinite in length.  

The power set axiom determines that the width of the tree at the base, after the branches 

become actually infinite, is the ordinal   2 P , whose cardinal size 02  is defined to be the 

size of the continuum:  02c .  ZFC also determines, through Hartog’s theorem, that there is a 

sequence of increasing ordinals:   0 1, , ... , , ...  though the upper end of this scale is also 

ambiguous.  ZFC does not determine how to match the ordinal   2 P  with this scale.  It is 

determined that this tree has a potentially infinite sub-tree; the structure denoted 2  which 

is isomorphic to Fin, the collection of all finite subsets of  .   

Looking at the tree one might be tempted to say that the length of the branches in 

  2 P  is also determined, for after all they are infinite.  But it is consistent with ZFC that 

  22 , meaning that before we reach the terminal stage of this tree, we have generated a 

distinct set of ordinal length 1 , either as a branch or as a level.  The dots in the above 
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diagram represent a gap between the finite part of the tree and the actually infinite part.  

Therefore, above every terminal point in the tree, where the limit has been attained, there is an 

actually infinite tree; furthermore, this actually infinite tree is a replica of the tree as a whole.  

Therefore, it is not inconceivable, that the branches of the tree must actually take length 1  in 

order for the totality of all branches,   2 P , to be generated in the limit.  Similarly, if 

  22  then at some stage of the generation of the tree its width must attain ordinal 1 , 

where    0 1 2 .  Thus, in conclusion, the axioms of ZFC are consistent with many 

interpretations of the structure of the Cantor set.   

To further clarify this point, in set theory the Cantor set   2 P  is primarily 

defined as the totality of all functions:   2 .  This appears to unambiguously structure the 

Cantor set as having only branches at the limit of maximal length   and only at the limit a 

width of size  1 2  embedded within which is an antichain of length  , which corresponds 

to the skeleton of the dense partition of the continuum.  All of this would imply the 

Continuum hypothesis.  However, in set theory the Cantor set is a structure embedded within 

the proper class of all sets whatsoever, so the possibility exists that in the first instance there 

is some partial order lying outside the Cantor set that serves to add additional structure to the 

Cantor set and thence to the continuum.  For example, a partial order corresponding to a 

forcing:   : 2C  would achieve this.  Assuming that this forcing also satisfies a condition 

known as the countable chain condition, this then implies 
2 .  This in turn would 

demonstrate that     2 2 , , contradicting the weak continuum hypothesis,     2 2 , , 

whereupon the Cantor set,   2, 2  becomes isomorphic to the structure,    2, 2 , so we 

see that the structure of the Cantor set in ZFC is highly ambiguous.   

Thus it has been concluded in the literature that the question depends on the 

adoption of further axioms; it is implicit in this discussion that these axioms will supply the 

missing structure to the Cantor set.  But the discussion is constrained firstly by the 

assumption that only first-order axioms shall be considered, and secondly by the manifest 

problem that no one axiom can really be said to be a better candidate than another.  If the 

question could become purely empirical then some progress by that approach might be 

possible; however, the question of how to experimentally test a model of the arithmetical 

continuum has not yet been considered. 

Nonetheless, it emerges that there is a pre-existing structure for the Cantor set 

provided by the second-order Axiom of Completeness, which has some historical claim to 

importance, and furthermore, given this Axiom, we have already gone a long way in this paper 

to demonstrating an unambiguous structure to the Cantor set.  Understanding that the 

arithmetical continuum is generated in the following three stages: 

 

1. A potentially infinite dense subset provides a basis for recursive sequences that 

generate real numbers; these sequences are functions from   2 , or equivalently, 
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  .  This dense subset is usually designated  , but as this structure is 

equinumerous to  , it may also be taken to be  .  This is the separation property: 

every set of cardinality continuum has a dense subset. 

2. Subject to the Heine-Borel theorem, this potentially infinite dense basis is extended to 

an actually infinite partition of the continuum, which becomes the skeleton of a 

complete Boolean algebra.  Real number generators are equated with the collection of 

all ultrafilters in the set Fin. 

3. The arithmetical continuum is then generated as the derived lattice, Boolean algebra, 

of the actually infinite skeleton of the continuum.  This generates the continuum as a 

collection of prime ideals which correspond to functions   2 , that is to sequences 

enumerating the binary expansion of a real number.  The conception is further 

completed by the assumption that each binary sequence converges on a unique real 

number, which is a point of the arithmetical continuum. 

 

Subject, then, to the second-order Axiom of Completeness, the Cantor set has an 

unambiguous structure, and the question of the size of the continuum becomes: what is the 

cardinality of the structure 2 ?    

 

9. The algebraic numbers 

9.1 Polish spaces 

This is the family of separable, complete metric spaces and includes the Euclidean spaces, 

Cantor space and Baire space.  Those that we are particularly concerned with are Cantor space, 

denoted 2 , Baire space denoted  , the real line (arithmetical continuum), denoted  , and 

the unit interval, denoted    0,1 . 

 It is possible to demonstrate: - 

 

1. A standard injection of Baire speace into Cantor space 

2. A standard binary expansion of real numbers 

3. A standard surjection of the Cantor space into the unit interval.25   

 

Together these ensure that that the Cantor space and Baire space may be taken as 

representatives of the real numbers in the unit interval, in that (a) they have the same 

cardinality, which is continuum, and (b) they possess the fundamental property of being linear 

orders that are complete and separable.  This enables us to switch between all three 

representations, and to transfer results that are more naturally demonstrated in one context 

 
25 This is derived primarily from the treatment in Levy, Azriel [2002]. 
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to another.  One particularly important example of this process concerns the algebraic 

numbers, where the result that the set of all algebraic numbers is countably infinite is proven 

in the context of Baire space, but we wish subsequently to transfer it to Cantor space, which is 

the Boolean model of (some finite part) set theory that we are working with.  This is achieved 

automatically by the existence of the bijection that maps the real numbers to their standard 

binary expansion. 

However, the differences between the three representations are also significant and 

are frequently ignored.  In particular, both Cantor space and Baire space are discrete and 

totally disconnected spaces.  Since   is connected it is not homeomorphic to either Cantor or 

Baire space.  This difference is crucial.  It means that Cantor space is not homeomorphic to 

the unit interval, and the two sets are not identical.  Hence, to become a true representative of 

the unit interval we must add to the notion of the Cantor set some additional properties.  This 

has been the whole theme of this monograph.  I will further show below [Section 10] that in 

order to be a model of the unit interval the skeleton of the Cantor set in the form of the 

Derived set must be treated as a collection of atoms and co-atoms, where the atoms are 

boundary points, and the co-atoms converge in the limit on extension points.  None of this is 

conveyed by the mere image of the Cantor set,   2 0,1 , which is an ambiguous structure 

when it comes to treating it as a model of the continuum.  Levy [2002] also draws our 

attention to the fact that “Cantor and Baire spaces are “dimensionless”, unlike the real line 

 .”  It is this that points to the absence of the primitive notion of extension, which shall be 

explored below [Section 10.4].  Cantor and Baire space are mere collections of boundary points 

with null measure.   

9.2 Algebraic numbers 

Let    t  be the ring of polynomials in one indeterminate t, with integer coefficients ka ; 

these may be positive or negative integers.  The polynomial has representation: - 

 

    2
0 1 2 ... n

nf a a t a t a t  where  0na . 

 

If  1na  then the polynomial is said to be monic.  Let   be a root of f.  Suppose that for all 

k n  there is no other polynomial for which   is a root, then f is said to be a minimum 

polynomial for  .  It is customary to indicate a minimum polynomial by denoting it  m m t .   

 Then an algebraic number is a root of a non-zero minimum polynomial,  m m t , of 

one variable with integer coefficients.   

 We wish to relate the algebriac numbers to the ideal of all finite subsets of the Cantor 

set, which is denoted     F 2Fin .  We will show that every algebraic number corresponds 

to some lattice point in     F 2Fin .  Firstly let us prove that the set of all algebraic 

numbers is countably infinite. 
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9.2.1 Cantor’s theorem 
The set of real algebraic numbers is denumerable 

 Proof 

The weight of a polynomial,  



0

n
i

i
i

f x a x , is defined to be the number 



0

n

i
i

n a .  

For any given weight there are only a finite number of polynomials having that weight.  

These may be arranged lexicographically, for example, by listing them by order of n 

first, and then in order of 0a .  Every non-constant polynomial has a weight of at least 

2.  List all polynomials in order of weight followed by the lexicographic order.  Every 

polynomial of degree 1 or more appears in the list just once.  Each polynomial has a 

finite number of real zeros, so a denumerable list of the zeros may be derived from 

the list of the polynomials.  The list is infinite because   is a subset of it. 

 

This result already settles this issue.  However, to be more explicit we proceed as follows.  So 

far we have considered the atoms of the skeleton of the real line to be represented by a 

sequence:           1 , 2 , 3 , ... , .  But the members of this set are only labels, and the 

potentially infinite part of this,        1 , 2 , 3 , ... , being non-atomic, is a collection of 

notional atoms.  To display the connection with the algebraic numbers, we choose a 

representation in which the notional atoms are ordered pairs of numbers, ,j n  where 

  0,1j  and n .  We think of this as an encoding of an integer coefficient of  .  Thus the 

coefficients 3  and  4  correspond to ordered pairs 0,3  and 1,4  respectively.  We 

regard the atoms as externally ordered in this model, so we require the Axiom of Choice to 

bring this about.  In this way we may map a set of atoms unambiguously to a polynomial in 

   t .  For example, the sequence of atoms, 0,3 , 1,4 , 0,0 , 1,2  maps to the polynomial 

  23 4 2t t .  Looking at 0,3 , 1,4 , 0,0 , 1,2  as the ordered meet of atoms, 

   0,3 , 1,4 , 0,0 , 1,2 0,3 1,4 0,0 1,2 , we have an embedding of minimum 

polynomials of the ring    t  within the lattice  of finite subsets of Baire space.  That the meet 

exists follows from the fact that the lattice is non-atomic.  To each of these mimimum 

polynomials corresponds a set of algebraic numbers; let m  denote the degree of the 

minimum polynomial  m t  then there are  m  algebraic roots at the correspondent lattice 

point.  This is an surjection of the polynomial ring    t  into the set of finite subsets of Baire 

space.26 

 
26 The relationship between minimum polynomials and their distinct roots is clarified in Galois theory.  

However, in this context we only require that all roots correspond to some minimum polynomial or other.  

Therefore, the complexities of the Galois theory and the need to define the concepts of normal and 

separable field extensions need not be of concern here. 
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 The encoding on which this is based, ,j n  where   0,1j  and n , represents each 

polynomial    t  as corresponding to a member of Barie space,  .  Employing the principle 

that Baire space has as many lattice points as Cantor space, and using the standard binomial 

representation of any number n , we see that to every algebraic number there corresponds 

to a meet in the potentially infinite part of the Cantor set:     Fin 2F . 

 

10. Decomposition of the skeleton 

10.1 Measure and Category on the arithmetical continuum 

We require some background theory concerning perfect, meagre and null sets.  All of these 

results follow from the Axiom of Completeness.  Given a set S, a point x is an accumulation 

point (also known as limit point) of S if every open interval that contains x also contains 

infinitely many points of S.  The set of accumulation points of S is called its derived set.  A 

perfect set is a set that is its own derived set.  So a perfect set is equal to its own closure.  

There is a construction of the Cantor set,    0,12 , that involves the systematic removal of 

segments of the closed unit interval.  This displays it as the Smith-Volterra-Cantor set 

 3SVC .  The length of any interval I is denoted I .  The measure of a set, S, denoted   * S , 

is defined in such a way that the measure of an interval is equal to its length:   * I I ; that 

is, if    ,I a b  or   ,I a b  then    * I b a .27  We do not here go into the details of the 

definition of measure; it is sufficient to know that the measure of an interval is equal to its 

length, which is also called its outer content.  It is a result that the Cantor set is perfect, 

nowhere dense and has outer content equal to zero.  A set  A  is called a nullset (or a 

measure zero set) if for each   0 there exists a sequence of intervals nI such that  nA I  

and  nI . Singletons are nullsets and any subset of a nullset is a nullset.  Any countable 

union of nullsets is a nullset.  A set is said to be first category or meagre if it can be 

represented as a countable union of nowhere dense sets.  A subset of R that cannot be so 

represented is said to be of second category.  Baire’s theorem states that the complement of 

any set of first category on the line is dense.  No interval in   is of first category.  The 

intersection of any sequence of dense open sets is dense.  Measure zero sets and sets of first 

category are “small”, but in different senses.  Oxtoby [1980] remarks, “A nowhere dense set is 

small in the intuitive geometric sense of being perforated with holes, and a set of first 

category can be “approximated” by such a set.  A set of first category may or may not have 

any holes, but it always has a dense set of gaps.  No interval can be represented as the union 

 
27 I am using   to denote the principal element of the prime ideal of all finite sets,         ,P  and 

 *  to denote the measure of a set. 
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of a sequence of such sets.” Neither class (measure zero, first category) contains the other; 

“null and meagre describe “smallness” in two different ways.” (Bartoszynski and Judah [1995]) 

The symbols   to denote the ideal of all null sets in  . and  to denote the ideal of all 

meagre sets in   are standard. 

10.2 The meagre-null decomposition of the real line 

10.2.1 Theorem, meagre-null decomposition 
The line can be decomposed into two complementary sets A and B such that A is of 

first category and B is of measure zero. 

Corollary 

Every subset of the line can be represented as the union of a nullset and a set of first 

category. 

 

Oxtoby [1980] remarks that “A similar construction can be done in 2 .”  This is correct, and 

we shall presume that any construction performed in   is equally valid for 2 .  The 

commentary below will clarify this. 

 

 Proof of the theorem 

 There exist sets      and  such that A B A B   

Let :nq n  denote an enumeration of rationals according to some rule.  Let 

    
 

,

1 1
,

2 2i j n nn n
I q q . 

Let   




  ,
1

1,2, ...j i j
i

G I j  and 





1

j
j

B G . 

For any   0  we can choose j so that 1

2j
. 

Then  ,i j
i

B I  and    ,

1 1

2 2i j i j j
i i

I .  Hence B is a nullset. 

However, jG  is a dense open subset of   being the union of a sequence of open 

intervals; it also includes all rational points.  Hence its complement jG  is nowhere 

dense.  Hence,   j
j

A B G  is meagre. 

That is, A   and   B A  . 

 

The essential idea of the proof is to trap every rational number inside an individual open 

interval which can be shrunk to a size as small as one pleases.  These open sets comprise 

intervals that at any finite stage of the process overlap and cover the unit interval.  In the limit 

they shrink to null sets and uncover a meagre, boundary set that has measure 1. 
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In the proof every rational is enclosed in an open set of size 
1

2j
 where j .  What 

we are doing is enclosing every rational number within an open interval jG  of a size that can 

be made arbitrarily small,   * jG .   This then gives us a family of a countably infinite 

dense open subsets of   and A is the union of these such that      * 0,1 0A .  Then its 

complement    0,1B A  is a countably infinite set of (closed) nowhere dense subsets of 

  0,1 , and so meagre; it measure is      * 0,1 1B . 

The family of open intervals, jG , has cardinality 0 , but both A and B are unions of 

members of these families; the cardinality of each jG  is continuum, so the cardinality of both 

the A and B sets is continuum.  This decomposition demonstrates that a meagre set may have 

positive measure. Thus we have: - 

 

A A null set   * 0A  

B A meagre set       * 0,1 1B  

 

The decomposition,   A B , where  B A , is a decomposition of the skeleton of 

the one-point compactification of the real line.  Sets A and B are themselves collections of 

 02c , continuum many points.  Set A may be thought of as a collection of subsets, each of 

which is “centred” one some unique rational number; we shall call these clusters.  This is what 

arises from the decomposition.  However, the members of these clusters are real (specifically, 

irrational) numbers that do not belong to the meagre set B.  The members of B are real 

numbers not belonging to the null set A.  The irrational numbers may be sub-divided into (a) 

algebraic irrationals, and (b) transcendental reals.  Since algebraic numbers correspond to 

lattice points of Fin, this entails that the transcendental numbers may be classified as: - 

 

(a)  Transcendental reals not belonging to the meagre set A in the above decomposition. 

(b) Transcendental reals not belong to the null B set in the above decomposition. 

10.2.2 Definition, Cohen and amoeba reals 
A Cohen real is a transcendental number not belonging to the meagre set A. 

An amoeba real is a transcendental number not belonging to the null set B.  Let 

  
    : ,  is open and *U U U UA 2  (See Bartoszynski and Judah [1995].) 

Then U is an amoeba real.28 

 
28 Concerning the difference between an amoeba and a random real, which are also generally characterised 

as real numbers not belonging to any null set.  (Please refer also to section 14 on Forcing and generic 

sets.)  Random forcing within the context of first order set theory (ZFC) is defined relative to an encoding 

of sequences that converge on random reals.  These sequences are called Borel codes. 
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Cohen reals comprise clusters of reals each associated with a unique rational number, q .   

10.3 The decomposition of the one-point compactification 

We continue to examine the properties of the actually infinite skeleton of the continuum:  .  

By an abuse of notation, through out this subsection we will allow   to denote the potentially 

infinite part of the skeleton.  That is, here,   represents       1 , 2 , 3 , ... . However, we shall 

also use         1 , 2 , 3 , ...  where we wish to emphasise the relationship between this set and 

the prime ideal   which is the supremum of all families of sets in Fin.  (   in this sense 

should not be confused with   * X  to denote the measure of a set.)  Since function of the 

skeleton is to provide a dense subset of the real line, then it follows that the skeleton may be 

equally denoted  , and we have     .  There is a standard bijection between   and  , 

and so we label the basis elements of the skeleton by atoms,        1 , 2 , 3 , ... , , bearing in 

mind that these may also be paired off with an enumeration of rational coefficients, for 

example,        
1 1 2

1 , 2 , 3 , ...
2 3 3

.  So let us also think of each label as denoting a 

rational number.  Therefore, we may visualise each atom as introducing a boundary into the 

unit interval    0,1  corresponding to a rational number.  This boundary is a set of zero 

dimension and zero measure. 

 

 
Borel codes 

Every Borel subset of the continuum can be constructed from basic sets in countably many steps.  

The information about this construction can be stored in one real number.  BOREL denotes the 

set of Borel codes. 

Random forcing is defined specifically as: - 

Random forcing 

        : BOREL 2A AB


 where   is the null ideal. 

Amoeba forcing is not forcing in the sense in which random forcing with BOREL codes is, or Cohen 

forcing.  Given Cohen forcing,   Fn ,2 , amoeba forcing is what is left over in the continuum once the 

Cohen reals and other boundary points are removed from it.   

 Random reals are a possible sub-category of smoeba reals.  However, Cohen forcing does not 

specifically add them and it is the claim here that subject to the Axiom of Completeness the continuum 

has only Cohen forcing, denoted   Fn ,2 , that these add amoeba reals and no other reals.  So in this 

model there are no random reals. 
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Suppose the first atom  1  in the skeleton correspond to the boundary point 
1

2
 in the unit 

interval    0,1 .  By removing this atom, we obtain the co-atom    1 ; this corresponds to 

the open interval 
        

1 1
0, ,1

2 2
; it is open because the open interval   0,1  is both closed and 

open in itself.  We have for each atom:       n q ; to each of these atoms there 

corresponds a cluster of Cohen reals in the meagre-null decomposition.  The collection of all 

such reals is the A set of the above decomposition.  Then we observe that the collection 

                     
      

 1 1 2
1 , 2 , 3 , ... , , , ...

2 3 3
 can no longer be taken as the complete skeleton of the 

real line; taken collectively it is both a meagre and null set corresponding to rational numbers 

that act as a basis for the A set, and provides no basis whatsoever for the B set.  Consider the 

collection of coinfinite subsets of  :    1 ,        2 , ... , ... , .  These comprise the co-

atoms of the Derived set.  These act as a basis for the B set in the decomposition theorem.  

Since each           1 , 2 , 3 , ...n  correlates to a rational point, each      n  is an 

interval in the unit interval    0,1 .  Furthermore, since each  n  represents an isolated 

boundary point, then each    n  represents an open interval in    0,1 .  So the skeleton of 

the arithmetical continuum must be decomposed into two collections: - 

 

A  The skeleton of atoms of the derived Cantor set of the continuum, which are 

boundary points corresponding to rational numbers, and collectively both a null and 

meagre set.  This collection has measure    0A .  It has canonical representation: - 

         1 , 2 , 3 , ... .  The atom   , which represents the neighbourhood of 1, is not 

a member of this collection. 

 B  The skeleton of co-atoms of the derived Cantor set of the continuum, which are open 

intervals and collectively neither null nor meagre sets.  In the unit interval this 

skeleton has measure     0,1 1 .  It has canonical representation: - 

               1 , 2 , 3 , ... . 
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The co-atom           is not a member of this collection and represents the 

neighbourhood of 0 in the interval   0,1 .  It is this neighbourhood that has been 

perforated by a dense collection of points corresponding to the rational numbers in 

the skeleton A . 

 

By Baire’s theorem, the complement of any set of first category on the line is dense.  Hence the 

skeleton of co-atoms is dense in  .  So the Derived set of the one-point compactification of 

the real line has the following structure: - 

 

0

1

2< F (  ) 

2C (  ) 





< 

  {1},    {2}, ....

{  }

{1}, {2}, {3}  ...

Skeleton of atoms.

Dense subset of  comprising mere points.

Collectively, both a meagre and null subset of .





Skeleton of co-atoms.

Dense subset of  comprising  open intervals

 

  



not belong to any null or meagre subset of .

NOT NULL
MEAGRE

AND 
NULL

 

 

We need to add some clarificatory remarks about the representation of a co-atom by, for 

instance,    1 .  Taking    1,2,3, ... , then      1 2,3,4, ...  is a mere collection of 

numbers.  There is nothing in    1  to indicate that as a collection it represents an interval.  

It is the meagre-null decomposition of the line that forces us to treat    1  in this way.  If we 

do not regard    1  as corresponding to an interval, then it is a meagre and null set, and 

there is no interval of positive measure in the entire structure.   

10.4 Boundaries and extensions 

The decomposition of the skeleton forces us to introduce a distinction between two kinds of 

points: boundaries and extensions. 
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 10.4.1 Definition, point 

 A point is that part of the continuum that corresponds to a real number,   . 

 10.4.2 Definition, absolutely zero measure 
I shall say that a point has absolutely zero measure if no collection of such points of 

whatever cardinality has positive measure.   

10.4.3 Definition, boundary point or boundary 
Boundaries are points of absolutely zero measure. 

 

Boundaries correspond to what Aristotle says about points having no extension.   

 

Points are dimensionless.  No continuum is composed of points.  Points act as 

boundaries or limits only.29  [Section 3.1] 

 

Evidently, we cannot make a continuum out of boundary points.  Note, that the Cantor set 

proves that such a set of cardinality c  exists, because the Cantor set is a set of c  points with 

zero measure.   

10.4.4  Result (+) 

Every collection of boundaries is meagre (first category in  ). 

Proof 

From Baire’s theorem, no interval in   is first category.  No collection of boundaries 

is an interval. 

 

Since we cannot make a positive measure of such points, we must have another kind of point. 

10.4.5  Extension points or extensions 
Extensions are points of measure incommensurable with zero, but such that any 

collection of continuum many such points has finite measure.30 

 

The exact measure is undetermined: there is continuum many points in any interval, so it is 

not possible to infer an exact finite measure from a collection of any cardinality.  We cannot 

 
29 On the phenomenological continuum, boundaries are also fictional or idealised elements.  However, on 

the arithmetical continuum we drop this property, because we have accepted into our science as coherent 

the notion of an actual infinity, and this entails that the continuum is a collection of points.  So relative to 

the arithmetical continuum, the points are no longer fictional.  The theory of the arithmetical continuum 

as a whole may be a fiction, so we transfer the property of being a fictional entity from the part (boundary 

point) to the whole (the arithmetical continuum). 
30 Extensions or extension points might have some claim to be called infinitesimals; however, they do not 

necessarily have the properties ascribed to them in the recent Robinson axiomatisation of infinitesimals 

and they obey the Axiom of Archimedes, so we shall not use that term.   
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compose an interval from any collection of boundaries; w infer the existence of extensions 

from the fundamental property of the Cantor set, that it is a totally disconnected, nowhere 

dense subset of the continuum which is first category in the continuum and of zero measure.  

Hence there are two collections: one of boundaries and the other of extensions.  We may also 

work in the reverse direction by adopting the following principle or “axiom”. 

10.4.6 “Axiom of indestructibility of extensions” 

Let 

 n
n

I  be an actually infinite sequence of nested intervals.  If 


  n
n

I , then 

 n
n

I  

is never a boundary; 

 n
n

I  is always an extension. 

 

Any interval on the continuum, open or closed,    , , , , ...a b a b , self-evidently represents an 

extension in space.  What the axiom of indestructibility of extensions says is that we can never 

transcend the class of extensions to obtain a point of no extension whatsoever.  In this way we 

seek to embody the following aspect of the phenomenological continuum: - 

 

Space is composed only of space; subdivision of the continuum generates only 

another continuum.  [Section 3.1] 

 

From this statement we may say that a synonym of “extension” would be “space”; but whereas 

“extension” implies something linear, or of one-dimension, space implies more than one 

dimension.  We also place the term “axiom” in this definition within scare quotes.  This is 

because it is not really an axiom, but a theorem consequent on the second-order Axiom of 

Completeness.  We have already proven this by demonstrating the existence of extensions 

from the theorem that the Cantor set is totally disconnected.  We need something to connect 

the points of the Cantor set within the continuum, to join them together, and these are the 

extensions. This is the reason why the Cantor set is not homeomorphic to the continuum.  

That is why the Cantor set, as a bare notion of the power set of   is not a model of the 

continuum.  Only a structure homeomorphic to the continuum can be its model.  This 

homemorphic structure is provided by the derived set, 2 , which becomes homeomorphic 

because it contains extensions in order to fill out the line and make it continuous and 

connected.  Subsequently, I shall also demonstrate the existence of extensions by 

consideration of the Mahler classification of transcendental numbers [Section 16]. 

I shall also subsequently prove that there is continuum many extensions in the 

continuum [Section 17.4].  Since it takes c  many extensions to make up any interval of 

positive measure, it follows that the measure of an extension is also zero.  However, I shall 

define measure of an extension to be relatively zero; precisely because any collection of 

continuum many of them has a positive measure.  Subsequently, we shall see that the S 

numbers of the Mahler classification of transcendental numbers constitute extensions and we 

will understand why these numbers are relatively zero, because we will show them to have a 

substructure [Section 16.3.13]. 
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 To say that a set, X, has zero measure is to say that it may be placed inside an 

interval, I, whose measure may be made as small as we please.  In symbols: - 

 

                          * 0 , *X I I a b X I I  

 

In order to avoid even the hint of circularity, we use   in this definition rather than   

(    ; this is because that the continuum,  , in our work is constructed from  , so it 

could be construed as circular to assume its existence in a definition of one of its members.  

We wish to define the arithmetical continuum just as Hardy did [Section 3.3] as “the aggregate 

of all real numbers, rational and irrational” and “suppose that the straight line ... is composed 

of points corresponding to all the numbers of the arithmetical continuum, and of no others.” 

 However, this is an interesting and moot point.  Prima facie the need to use   rather 

than   should not pose a problem, owing to the classical result that between any two rational 

numbers there is an irrational number.  However, if it is possible to imagine that there is a 

point on the continuum that comes immediately after 0 in the interval,   0,1 , then this point 

could not be a rational number.  So, then, there would be a real,    such that, for any 

extension point, x, the measure of x is greater than or equal to  ; this is also what we mean 

by saying that measure of extensions is only relatively zero. 

 To say that a set, X, has zero measure is essentially to say that we have nothing in our 

number system with which to measure it.  So in this sense, its measure is zero precisely 

because its measure is incommensurable with zero.  If we had more than 0  many numbers in 

the skeleton, then it could become possible to compare such apparently zero measure sets 

with some other concept of measure.  This is one of the ways in which models of the 

continuum may be constructed in which the Continuum Hypothesis is violated, and also a 

possible motivation for doing so. 

10.5 The primitive notion of extension 

In first-order set theory we have just one primitive notion, that of set membership.  

Nonetheless, the arithmetical continuum is a model of a physical reality – the continuum is 

always extended in space.  We literally “see” this extension and that is how we know it, and it 

is part of our primitive, phenomenological concept of the continuum, from which we primarily 

abstract our scientific notions, whatever empirical confirmation we may subsequently give 

them.  The question arises: can we derive the notion of extension from that of set 

membership?  At first, it seems that we might do, for we can define an interval in any ordered 

set.  However, here we realise that there are intervals in sets that do not comprise an 

extension, in the sense of space, because these sets are discrete and totally disconnected.  A 

primitive notion of connectedness also goes with the concept of the continuum.  Thus, from 

set-membership alone we cannot define or abstract the notion of extension.  Extension is a 

second primitive notion required in order to form a model of the continuum.  It is explicitly 
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employed in the model displayed here when we imagine dividing an interval by means of a 

mere boundary; the interval being a priori extended.  Then we divide the interval into that 

which is not extended and takes up no space whatsoever (a boundary), though it may yet be 

said to “exist”, and that which remains extended, and yet has had something removed (an 

open interval). 

 It is often said that first-order set theory is sufficient to formalise every part of 

mathematics.  In this monograph we clearly see that this is doubly false.  Firstly, the notion of 

the continuum here is founded on the second-order Axiom of Completeness, which is 

universally allowed to be irreducible to first-order set theory.  Secondly, we see that in 

addition to the primitive notion of set-membership we have a second primitive, that of 

extension. 

 One often sees the claim that everything that can be expressed in a second-order 

theory can be translated into a many-sorted first-order theory.  This claim is misleading.  The 

properties of second-order logic distinguish it fundamentally from any first-order logic that is 

sufficiently strong to express Gödel’s theorem.  Second-order logic is categorical for 

arithmetic, first-order logic is not.  For absolute clarity on this point see Boolos, George and 

Jeffrey, Richard [1980] , Chapter 18. 

10.6 Modified image of the derived set 

We began by assuming that the skeleton of the continuum was an actually infinite partition 

into 0  pieces.  For the sake of exposition, there was an ambiguity in this, in that it was 

assumed that the partition could be into intervals, but the structure of those intervals was 

ambiguous.  One way to consistently achieve this is to make the skeleton comprise of half-

open intervals. 

 

…
  

 

The null-megre decomposition of the continuum reveals that we have to go further, and 

decompose the skeleton into two parts – one comprising boundary points clustered on a 

rational number, the other comprising open intervals. 

 

A

B  

 

We are treating the intervals here as co-atoms, but they arise from the decomposition of the 

skeleton and may also be viewed as atoms.  In this case we may draw the derived set as folded 

and twisted on itself. 
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co-atoms

boundary points

intervals

 

 

We may demonstrate that the derived set is, subject to some caveats, a Klein bottle.31   

 

11. Lowering the floor and notional atoms 

11.1 More about Fin 

We now seek a more concrete description of forcing by introducing a description within the 

Derived set in terms of lattice extensions, which is a process I shall call lowering the floor of 

the lattice. 

 The reason why Fin 2  is atomless is because   is potentially, not actually, 

infinite.  It would seem that singleton sets        1 1 , 2 2 , ...  are ideal candidates for 

atoms of   F 2 , all the more so because the corresponding sets based on ordinals 

   1 1 , ...  are atoms of the Derived set of which Fin is a proper subset.  But from within 

Fin, we find that it is always in a state of ongoing generation that has never been completed. 

[Sections 8.5 to 8.7].  It is a dense linear order.  Suppose we take it as completed as some finite 

stage of its generation; then what we obtain is a finite set of notional atoms: 

       0 , 1 , ... ,nX n  and the finite Boolean algebra n2 .  This is atomic in itself but as a 

representation of Fin always incomplete.  No finite determination of notional atoms of Fin is 

ever sufficient to capture its potentially infinite and dense structure.  A determination of 

notional atoms,        0 , 1 , ... ,nX n , may potentially be enlarged in one of two equivalent 

ways: either (1) we add further atoms to the end of the list,     1 , 2 , ...n n  , or we allow 

meets of the notional atoms to be defined:         0 1 , 0 2 , ... ; the formation of these shows 

that the notional atoms never were true atoms in the first place; the two approaches are 

equivalent because the second of these would result in a re-labelling of the notional atoms to 

new notional atoms:             
   1 1 2 , 2 1 3 , ... ; Any finite determination of Fin is such 

that it may be embedded in another larger lattice with new notional atoms that subsume the 

previous ones.  This process of replacing one determination of Fin by a larger one I call 

lowering the floor of the lattice.  Fin is not a determinate Boolean algebra but rather a 

 
31 This is the subject of a separate paper and part of my monograph of Poincaré’s thesis. 
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potentially infinite collection of finite algebras: 


     
12 4 2 2, ... , , ...

n n

2 2 2 2 2 .  What we 

denote by    P  above [Section 8.3] is the supremum of this sequence. Because   is 

locally compact, so is Fin; likewise, we see that each member of the sequence above is 

compact (a fortiori locally compact), but Fin itself is not globally compact because it is not 

bounded above. 

11.1.1 Model of the countable collection of intervals identified by their end-points 
(Givant and Halmos [2009] p.25 et seq.) 

Left half-closed intervals:       , :a b x X a x b  define an interval algebra. 

 

0 1

1 2 3 4

) ) ) )
 

 

It is a countable collection of intervals identified by one end points.  Each interval is 

an open subset of   0,1  and hence atomless. 

 

Fin is equivalent to this countable collection of intervals identified by their end-points.  The 

intervals are connected and hence do not provide atoms.  If either we strive to create totally 

disconnected sets by taking countable intersections of these intervals and so reach down to 

ultrafilters, or we strive to create larger intervals by taking unions of these intervals and so 

build up to a maximal ideal, neither operation can be completed.  We are always left with sets 

that contain infinite collections of points in both directions.  This is a model of the atomless 

algebra. 

11.2 Generic sets  

Generic sets were introduced by Cohen [1966] in order to prove (1) that there is a model of set 

theory (ZF) in which there are non-constructible sets, and (2) that the Axiom of Choice is 

independent of the axioms of ZF set theory.  They are usually introduced in the context of a 

minimum transitive model of set theory.  In this paper we are working directly in the Boolean 

valued model of a sufficient subset of the axioms of ZFC to define our primary object of 

enquiry, which is the derived set, 2 , together with its non-atomic, countable subset, Fin.  

Our background logic is second order.  Therefore, we shall drop references to the minimum 

model of ZFC, which is a requirement of first-order set theory.  For us, first-order set theory is 

an important and incredibly powerful language, but we feel free to supplement it in any way 

necessary, particularly by second-order principles, and even by unformalised natural language 

argument where required. 
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11.3 Meets lie below the notional floor 

We start with Fin with notional atoms      1 , 2 , 3 ,... ; any lattice point (corresponding to a set) 

existing in Fin is represented by sets of numbers.  For example      1 , 1,2 , 0,3,7  are lattice 

points.  Each lattice point defines a principal filter.  For example, the filter  filter 1  

corresponds to the filter which contains every set in which 1 appears: 

            filter 1 1 , 1,2 , 1,3 , ... , 1,2,3 , 1,2,4 , ... .  This can also be denoted, 1 x .   

 11.3.1 Example 

1 x  corresponds to the filter which contains every set in which 1 appears: - 

           1 1 , 1,2 , 1,3 , ... , 1,2,3 , 1,2,4 , ...x  

                     1,2 1 2 1,2 , 1,2,3 , 1,2,4 , ... , 1,2,3,4 , 1,2,4,5 , ...x x x  

 

In Fin there are no atoms; however, relative to a numbering of the lattice, there is a notional 

floor; this floor can be lowered, so that below any level there is another level.  Although Fin is 

not atomic we imagine that there is some level in the lattice corresponding the singleton sets 

     1 , 2 , 3 ...  that correspond to notional atoms.  Because the singleton sets      1 , 2 , 3 ...  do 

not represent true atoms, their meets define filters.  Given a non-atomic lattice with singleton 

sets, we cannot represent their meets by other singleton sets, but only by expressions of the 

form      1 2x x  and so forth.   

 

{1} {2}

{0}  {1}

0

distance of 1
unit in the 
metric 
defined by 
the notional floor

{1}   x

{1}  {2}  {1,2} 

{2}   x{1,2}   x

notional floor of the lattice

( {1}  ) x  ( {2}  ) x 

 

 

By conjunctions (meets) of filters we lower the floor of the lattice.   

11.3.2 Example 

We may replace the notional atom  1 , 2  and  3  by infinite, incomplete sets of 

atoms, say: - 
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           
     
       

  

 

  

1 , , , ,... 2 , , ,... 3 , , ,...

1 2 , , ...

1 2 3 , ,...

a b c d a b d a c d

a b d

a d

 

 Alternatively, we can switch to an interval algebra. 

 

12. Cohen forcing and Cohen reals 

12.1 The tree and lattice of boundary points 

We now assume that the skeleton,  , is decomposed into a sub-skeleton of atoms 

comprising a potentially infinite collection of boundary points, labelled      1 , 2 , 3 , ... , with the 

addition of a point at infinity, representing the neighbourhood of 1 in the unit interval   0,1 , 

and denoted   , and a sub-skeleton of co-atoms, labelled           1 , 2 , 3 , ... , , and 

representing proper intervals of the unit interval.  The point at infinity must be an extension 

point, because it belongs to the filter of all cofinite subsets of  , all of which are represent 

intervals.   

Corresponding to the decomposition of the skeleton into meagre and not null sets, let 

us take the atoms to correspond to rational numbers that mark boundaries that divide the 

unit interval.  We will recursively generate the segment of all algebraic numbers [Section 9.2] 

       1 , 2 , 3 , ...  by introducing these rational numbers systematically into the unit interval 

by a method of bisection similar to the construction of the Cantor set.  This generates a lattice 

of boundary points. 

 

The unit interval, [0, 1]
0 1

{1}

{2}

{3} {4}

{5} {6} {7} {8}

Lattice of boundary points generating

a dense subset isomorphic to 

2
2

2
1

2
4

2
8

...

Corresponding  Boolean 
lattice of algebraic 
boundary points

 

 

All the points of the skeleton of atoms are generated by this potentially infinite recursion.  In 

the process, all algebraic numbers are also generated, since    is a basis for the ring of 

algebraic numbers, denoted   R  [Section 9.2].  The lattice generated is isomorphic to Fin.  

As already indicated any set of these points is both meagre and null. 
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 Completion of the lattice requires that we take an actually infinite number of 

iterations of the construction; that is   iterations as opposed to  .  We then obtain 2  

branches each of length  , each representing the binary expansion of a real number.  Because 

these numbers do not belong to the potentially infinite part of the tree, they are not algebraic; 

hence they are transcendental numbers.  Similarly, they are not members of any meagre set, 

and are hence Cohen reals. 

12.1.1 Definition, Cohen forcing 
The process of extending a potentially infinite branch in this lattice of boundary 

points to an actually infinite one is called Cohen forcing.   

 

Cohen forcing completes Fin by adding a Cohen real not belonging to any meagre set in Fin.  

(In fact, Fin comprises only meagre sets.)   

12.2 The character of a Cohen real 

The Cantor tree comprises an infinite collection of infinite branches. Each branch arises from 

the branching of a node into a pair of nodes.  When we take a path of length actually   nodes 

there is the question as to whether or not this property is violated.  Consider an actually 

infinite tree of boundary points: - 

 



x y

width 2    of which  are atoms 


branch (chain)
length 

 

 

In fact, the question is partly a pseudo question.  As the branches are of actually infinite 

length  , the branches x and y in the above diagram, corresponding to binary expansions of a 

real number, share the same binary expansion.  A Cohen real is defined by a branch length of 

 ; any branch longer than this is the same Cohen real.  When the path is of length actually   

the two “last” branches are so close together that the separation is absolutely 

incommensurable with 0.  In this way the two “last” branches become identified.  We may 

regard the Cohen point a member of the “space”, “interval” or “extension” between the “last “ 

two branches. 
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(          )
 s <  

 

The two terminal branches are identified because the distance (measure) between them is so 

small that it is less than any commensurable quantity.  The Cohen real may be pictured as 

either an infinite branch in the lattice of boundary points, or its correspondent Boolean 

algebra, or as a point occupying the interval (or extension) between them.  Cohen reals do not 

belong to any meagre set; they belong to the interior of open sets; the entire set of Cohen reals 

is an open dense subset of the continuum,  .  This makes Cohen reals into members of the A 

set above [Section 10.2] in the meagre-null decomposition of the line. 

Members of meagre sets form the boundaries of other sets; a meagre set is nothing 

but a boundary without interior; meagre sets have empty interior. 

12.3 Definition, Aronszajn tree 

An 1 -Aronszajn tree, T, is an 1 -tree such that every chain in T is of cardinality  . 

12.4 Result (+) 

The collection of boundary points is an 1 -Aronszajn tree. 

 Proof 

From the diagram we see that in the tree of boundary points the chains have length 

 , whilst the tree as a whole has cardinality  1c . 

 

13.  Amoeba reals 

13.1 The tree of intervals 

A real is a transcendental number that does not belong to any null set in the derived set of the 

one point compactication of the skeleton of the continuum.  When we discussed Cohen reals, 

above, we started with the notion of removing boundary points from the unit interval and 

generating the atoms of the skeleton: - 
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The unit interval, [0, 1]
0 1

{1}

{2}

{3} {4}

{5} {6} {7} {8}

Lattice of boundary points generating

a dense subset isomorphic to 

2
2

2
1

2
4

2
8

...

Corresponding  Boolean 
lattice of algebraic 
boundary points

 

 

By shifting our attention from the points, to the intervals that remain, we obtain a tree of 

intervals. 

 

 

 

In this tree each node represents an open interval, each of which is not null (i.e. has positive 

measure).  The boundaries are marked in black in the above diagram.  At each level they 

comprise a null set.  So the amoeba reals belong to the open intervals.  At no finite level is any 

amoeba real generated.  Only when the branches become actually infinite in length,  , do we 

have amoeba reals.  In this case the amoeba reals are these intervals, or rather extensions, as 

we have defined extensions above.  The amoeba real may be identified with an extension, ds, 

such that   ds  for all   .  When the branches of intervals become actually infinite,  , 

in length their length (or measure) is incommensurable with 0; it is the branch of the tree of 

open intervals itself that is the amoeba real, because the boundary points that separate these 

branches is collectively a null space, and amoeba reals do not belong to null sets. 
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 s < 

(       )ds

 s < 

1

2

An amoeba
is the  squeezed
within adjacent 
branches of the 
tree of boundary points.

 real
ds

The adjacent branches
are also in the  limit
incommensurable.



tree of
boundary points

tree of intervals

branch
length



 

 

 The Boolean algebra generated by the boundaries (the black spots in the diagrams) 

make a Cantor set.  This Cantor set is made up of a part of cardinality 0  corresponding to all 

the algebraic numbers in   0,1 , and the set of end points, of cardinality  02c  of Cohen reals.  

The whole structure is a perfect tree. 

 However, the collection of amoeba reals cannot be a Cantor set, that is to say, a 

perfect set of cardinality  02c .  The reason is that it is a proper subset of   0,1 , so that if it 

were a perfect, Cantor set, it would then have to be a nowhere dense set of measure zero.  But 

this collection, R, taken as a whole still has the same measure as the entire interval, since only 

zero measure boundaries have been removed from it.  Consequently, it cannot be a perfect, 

Cantor set.  Note, also, that the derived set of the amoeba reals must include all its 

boundaries; so the derived set is the entire continuum.  The derived set of any perfect set is, 

by definition, itself. 

We can see that the collection is non-cumulative. Looking on the points not as points 

but as gaps, the measure of the gaps is zero.  There are no null sets in the pieces (which are 

intervals); there are only null sets of the gaps.  Even if we take an infinite collection of the 

gaps such a collection cannot amount to a set of positive measure.  At every finite stage no 

amoeba reals whatsoever have been introduced into the lattice of intervals.  Every member of 

the potentially infinite lattice of intervals is an interval and has positive measure; i.e. is not 

null.  In the limit any amoeba real must belong to the left over part.  The line has been divided 

into 2  parts each of which has incommensurable measure, and yet the sum of which equals 

the measure of the whole line:      0,1 1 . 

But let us observe that the cardinality of the set of amoeba reals is  02c .  Although 

this set is not perfect, the above diagram does show that it is generated by a perfect set, one 

that contains amalgamations of these amoeba reals into open intervals of positive measure.  

So  02c  amoeba reals are generated. 
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13.2 Iteratively removing extensions 

We need to construct a representation of the amoeba reals that clarifies the fact that entire set 

of amoeba reals is not a perfect set.  Let us then imagine that we already have the set of all 

amoeba reals, which are extensions as we defined them above; let any amoeba real be 

designated ds.  According to the following diagram we construct a recursive process of 

removing all these ds from the unit interval.   

 

ds

ds

ds

ds
 

 

When the branches become actually infinite in length,  , we shall have removed all the 

amoeba reals.  In this diagram the other numbers, being the algebraic numbers and the Cohen 

reals, must belong to the pieces that were left over.  In the limit, at the  th stage, these have 

shrunk to intervals of length  s , which are incommensurable with 0.  This confirms that 

the Cohen reals are boundary points belonging to open intervals of zero measure. 

 Let us count the number of Cohen reals and amoeba reals that are constructed in this 

process. 

 

    








  

   

    

   

 



0

1 0 0

2 1 0 1

3 2 0 1 2

0

0 0

stage open intervals new random reals, cumulative 

or level converging ,  added

to Cohen reals

0 2 1 0 0

1 2 2 2 1 2 1

2 2 4 2 2 2 2 3

3 2 8 2 4 2 2 2 7

... ... ... ...

2 2 2 2 1 2n

n

ds

ds

c c

 

 

Thus there are as many boundary points as there are extensions, ds.  However, we also claim 

that the collection of ds is a Suslin tree.  
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13.2.1 Definition, the countable chain condition 
Let X be a topological space.  Then X has the ccc iff there is no uncountable family of 

pairwise disjoint open subsets of X.  Alternatively, if every antichain in X is at most 

countable. 

 Remark 

It is often said that this condition would be better described as the “countable 

antichain condition”.  This is true. 

13.2.2 Definition, Suslin tree 

A 1 - Suslin tree is a tree T such that  1T  in which every chain and antichain has 

cardinality  1 .  Another way of putting this is that a tree is Suslin if it has height or 

size 1 , branches of length   and has the countable chain condition. 

 

It is a result that all Suslin trees are Aronszajn but not conversely.  The following is a 

diagrammatic interpretation of the difference between an Aronszajn and a Suslin tree. 

 

1

1



Aronszajn

1





Suslin

maximal
chain /
length of
branch

size
or
height

width at lowest level size of maximal antichain 

Result (+) 
The set of all amoeba reals is a Suslin tree 

 Proof 

We need to generate cumulatively a set of   12  amoeba reals.  Examination of the 

diagram of the tree of amoeba reals shows that at each level the tree has the 

countable chain condition, since each ds is removed independently of the others.  The 

tree has maximal chain of length  .  As the addition of new amoeba reals lags behind 

the number of open intervals by one level, at this stage we have added only   linearly 

independent amoeba reals, ds.  The cumulative total is  




  
0

2 2 1 2n

n

.  Hence this 

is a Suslin tree. 

 

There is a result in Bartoszynski and Judah [1995] (p.139) that Cohen reals produce a Suslin 

tree.  That is right.  It is when we remove boundaries and complete this process that we also 

create a Suslin tree.  But the set of Cohen reals is not the Suslin tree, because it is a perfect set.  

Therefore, we must look elsewhere for the Suslin tree, and the only place to look for it is in 

the collection of amoeba reals; it is the set of amoeba reals that collectively comprises a Suslin 
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tree.  They observe, “... amoeba reals do not produce Suslin trees”.  This is also true.  It is the 

Cohen forcing that produces the Suslin tree. 

13.3  When is a perfect set not perfect? 

13.3.1 A puzzle 

We have another puzzle that needs clarification.  The Derived set, 2 , is our interpretation of 

the Cantor set, 2 , as a model of the continuum.  The Cantor set is perfect but nowhere 

dense.  The Derived set is perfect, but continuous.  We have now shown that the Derived set 

has two proper subsets: 

 

A A perfect set isomorphic to the Cantor set comprising all algebraic numbers and 

Cohen reals; also nowhere dense. 

B A set of cardinality continuum that is dense comprising all amoeba reals. 

 

13.3.2 Resolution of this puzzle 
Once again we must eschew the notion that the Cantor set is an unambiguous structure.  

There is a minimum structure which corresponds to the complete binary tree:    0,12 , 

which is also the set of all binary sequences:   2 .  This has cardinality continuum,  02c .  

This is not a model of the continuum.  As such it is ambiguous and under-determined.  The 

Derived set, 2 , is a model of the continuum.  Because     0card  it has as many 

points as the Cantor set, and so is, in a manner of speaking, a type of Cantor set: for instance, 

we have,     card card 22 .  Within this structure we identify two disjoint subsets: 

 

1. The set of all algebraic numbers and Cohen reals, of measure zero.  A perfect set, 

isomorphic to the Cantor set,    0,12 , and nowhere dense. 

2. The set of all amoeba reals, of measure 1 in the unit interval.  Not a perfect set.  Of 

cardinality continuum and a Suslin line. 

 

If we pair off the skeletons of the two sets, we regenerate the skeleton of the continuum:  , 

and so recover the Derived set as a model of the continuum.  There is more than one type of 

Cantor set, and to make a continuum, we need two of them. 
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14.  Forcing and generic sets 

14.1 A language to describe the lattice 

There are alternative approaches to the discussion of generic sets.  Cohen’s original paper 

(Cohen [1966]) allowed a distinction between a language describing partial orders and set 

theoretic models to which the language refers.  In the approach of Kunen [1980] the language 

and the model are recombined, and Kunen is at pains to stress that all the partial orders in 

question already exist in the model.  The aim of the language is to describe how models can be 

extended, but Kunen does this from within the ground model.  Kunen’s approach is forced 

upon him by the need to work entirely within first-order set theory.  The idea of a language 

talking about another structure does not cohere readily with first-order set theory, so Cohen’s 

original intuitive approach had to be modified. 

 In this paper the background logic is already second order, so we are free to adopt the 

more “natural” approach of Cohen. 

 So we will assume that there is a language K, sufficient to describe partial orders.  Our 

ground model shall be      0 Fin F 2L .  Because this lattice is not atomic, it is possible to 

lower the floor and obtain lattice points below it.  This is represented by an embedding of the 

lattice 0L  in a larger lattice 1L .  Iteration of this process creates a sequence of lattice 

extensions 0 1 1, , ... , , , ...k kL L L L  . We use the language K to discuss the relations between any 

lattice kL  in this sequence and its extension 1kL .  The Cantor set, 2 , is the limit of a 

sequence of lattice extensions 0 1 1, , ... , , , ...k kL L L L  starting with      0 Fin F 2L ; we may 

write,  
 

 2 lim n
n

L L . 

 Cohen’s original paper was inspired by Galois theory and the concept of algebraic and 

transcendental field extensions.  There is a deep and in fact exact analogy between Galois 

theory and the theory of generic extensions. 

 We need a convention for distinguishing between statements in the language K and 

corresponding relations within a lattice to which it refers.  The lattice 0L , has notional atoms 

 m .  To the lattice filter    filter m m x  there corresponds the statement in K, m x , where 

m  and x  are said to be labels or names of m and x respectively.  The expression m x  is a 

statement of the language K.  In a countably infinite lattice 0L  with notional singleton sets 

representing notional atoms, the singleton  (atom)  1  defines a filter of which  1  is always a 

subset of every element.  

14.1.2 Example 

              1 filter 1 1 , 1,2 , 1,3 , ... , 1,2,3 , 1,2,4 , ...x  

Denoting the elements of the filter by x, we have: - 
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         filter 1   iff  1   iff  1x x x x  

The corresponding statements in the language are 1 x  or   filter 1x . 

 

The language closely matches the lattice, but the language has other statements and symbols 

that enable it to talk about the lattice and so discuss its extensions and embeddings in larger 

lattices.  We introduce the symbol   to denote a relation called forcing between statements of 

K to describe relations between filters in 0L  and lattice extensions, 0 1 1, , ... , , , ...k kL L L L .  

Whenever the lattice point q is contained in the filter defined by the lattice point p and the 

two are connected by a finite or locally compact proof path  [Section 5.7] this is denoted by 

p q .   

 14.1.3 Example 

 In a lattice L let     1 , 1,2p q  then p q .  

In the language we have  1p x ,   1,2q x  and p q . 

 

The relation of forcing is such that    p q p q  , but the forcing relation extends the idea 

of deductive consequence of statements p  beyond that of deductive inference within the 

lattice and its finie or locally compact proof paths.  The relation of forcing is thus connected 

to that of logical consequence in that it says more about the lattice than is captured in the 

relation of locally compact proof paths: p q .   If a lattice is incomplete then we have some 

lattice points, p, q  such that     butp q p q  .  Nonetheless, in the sequence of lattice 

extensions 0 1 1, , ... , , , ...k kL L L L  none are incomplete in this sense; but the limiting case: 

 
 

 2 lim n
n

L L , which is a model of Gödel’s theorem, is incomplete. 

The distinction between forcing and consequence is as follows.  When we consider 

consequence, where we have incompleteness, we have a prior conception of the lattice L that 

has non-globally compact proof paths.  By contrast, the forcing language describes relations 

within a lattice L that is complete in this sense, but enables one to discuss the relation of that 

complete lattice to other lattices that are generic extensions of it.  So forcing is a relation 

between lattices whereas consequence is a relation within a given lattice.   

14.2 The construction of generic sets 

We have a lattice 0L  and a language K that is equipped with a relation of forcing   subject to 

the rule,  p q p q   where p q  iff there is a locally compact proof path in 0L .  The 

language K is countably infinite and hence all statements of K can be recursively enumerated; 

this corresponds to a recursive enumeration of the lattice points of 0L .   
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We now establish a series of rules for the generic construction which leads to a series 

of lattice extensions 0 1 1, , ... , , , ...k kL L L L  and the definition of a generic set.  Let 1 2, , ... , , ...kS S S  

be any recursive enumeration of the statements of K.  These are statements of the form 

  filterm  where m is a lattice point and  filter  of 0L .   

14.2.1 

Rule 0 

We start with a consistent collection 0p  of statements. 

Notation 

We denote a conjunction of statements by kp .  This corresponds to: - 

1. To a filter denoted  filter kp . 

2. If the filter is principal, then to a lattice point, which is the minimum point of 

the filter, and denoted  kp .   

 

At all finite stages of construction, the filter is principal, but at the limiting stage after   

iterations, it is not principal.  In the language, K, we have 


 lim k
k

q p , as a relationship between 

statements.  At the limiting stage this defines a generic ultrafilter,   filterU q , which we can 

prove to exist in the derived set, 2 , but there is no lattice point,  q , lying in 2 .  If it were 

an element of 2 , then  q  would be one of its atoms.  Then 2  would have more than   

atoms.  Suppose we partition   with a skeleton of  2  atoms, then  q  is an atom of the 

lattice 


 22 2 .  So we may regard q  as a real number, and   filterU q  as its real 

number generator.  It is this real number generator, or sequence, that lies in the Cantor set, 

not the real number itself. 

The statements, kp , are also referred to as conditions, because they convey 

information about members of a filter.  The collection 0p  represents finite information about 

a generic set  filter q , and comprises a finite list of conjunctions of the form m q  or m q .  

For example,     0 3 , 47 , 932p q q q .  Here the round brackets is a device of my own to 

emphasise that this is not a disjunctive set, but a conjunctive one.  But it the literature it is 

customary use curly brackets as well; this is presumably so that we can use the language of 

subsets to describe relations between conditions, which then form a partial order, denoted,  .   
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 14.2.2 Example 

 

 
 

   

    



0

1

0 1

3 , 47 , 932

3 , 47 , 932 ,81

p q q q

p q q q q

p p

 

 

Since 0p  describes a lattice meet and not a join, we could also write: - 

          0 3 47 932p q q q . 

This shows that 0p  does not correspond to a lattice point such as  3, 47,932 , which lies 

above  3   47 and  932 .  The lattice point 0p  would lie below the lattice points  3  

 47 and  932  in the lattice if the lattice permitted it, and not above them.  Since 

      3 , 47 , 932  are already singleton or co-singleton sets, that is, notional atoms or co-

atoms, the meet        0 3 47 932p  does not lie in 0L ; however, 0L  is embedded in a larger 

lattice in the recursive sequence, 0 1 1, , ... , , , ...k kL L L L  obtained by recursively lowering the 

floor [Section 11].  Generic sets are constructed by rules for systematically generating a 

recursive sequence of lattice extensions, which is also a systematic process of lowering the 

floor.  The generic set itself is an ultrafilter constructed as the limit of this recursive process.  

It is not itself recursive, since the recursion can only generate successive members of the 

sequence of lattice extensions, and not the limit.   

Now we have to provide an example of a set of rules for generating a sequence of 

statements  kp  that act as successive approximations to a statement 


 lim k
k

q p  that defines 

a generic filter q. 

14.2.3 

Rule 1  

If  1k kS p  then  1k kp p .  Since 


 lim k
k

q p  this entails kp q . 

 

Example 

Let     0 3 , 47 , 932p q q q .  Suppose  1 3S q  then  1 0p p . 

 

This rule serves to ensure that kp  lies in   filterU q .  We have:    iff  q p p q ; q p  

describes lattice points of the sequence 0 1 1, , ... , , , ...k kL L L L  , whereas p q  is in the language 

K.  Notice that the relation is inverted. 
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p
0

U q= filter ( )

L K

q

p
k

p
0

{   }

p
k{   }



U p p  (   ) = filter ( )00

U p p  (   ) = filter ( )kk

not principal in L  

 

On the left we have a supraset relation,   0... ...k kp p p  in the sequence of lattice 

extensions whereas on the right we have a subset relation    0 1... ...k kp p p  in the 

language.  This subset relation also makes the conditions in K into a partial order, which we 

denote  :    iff  p q p q .  We will subsequently adopt a more generalised and abstract 

description of forcing, in which only partial orders will be considered.  Partial orders with 

differing properties define different forcings, and consequently different generic ultrafilters. 

 14.2.4 

Rule 2 

 If  k jS S  where  1j kS p , then 

 1. k jp S  (That is, k kp S .) 

 2. k kp S  and k kS p .  This also means kS q . 

 

This rule prevents kp  and q  from being inconsistent sets of conditions.  This in turn means 

that the lattice points to which they correspond cannot be names of the 0 of the lattice; that 

is, neither kp 0  nor q 0 .  This means that  filter q , which is a generic ultrafilter, lies in 

neighbourhood of 0 (the zero of the lattice) but distinct from it. 

At any finite stage the set kp  is finite (we say “contains finite information”) so there 

are statements S  of the form m q  or m q  that are undecided at this stage.  So we need a 

rule for deciding these statements as they come up in the recursive sequence of statements. 
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14.2.5 

Rule 3 

If   1k kS p  then at the stage k – 1  kS  has not yet been decided.  (This means, 

1k kp S  and  1k kp S .)  Then  1k k kp p S .  This entails k kp S  and kq S  

 

This simply says that if at stage k – 1 we have kS  undecided, then we decide kS  at the stage k 

by adding it to  filter kp .  This rule forces us to decide every statement whatsoever in the 

recursive sequence 1 2, , ... , , ...kS S S  . 

14.2.6 Theorem, generic sets cannot be constructed by finite information 

Together these three rules applied to a lattice point  0p  create an ideal at  0p .  The 

generic set  filter q  lies at on a globally non-compact path of actually   lattice 

points distant from 0p .  There are many such paths winding through the ideal at 0p , 

and the recursive sequence 1 2, , ... , , ...kS S S  picks out one of these and homes in upon 

the generic ultrafilter,  filter q .  Starting at  0p  there are more than   such paths 

winding through the idea; the number of paths is an ordinal   such that     0
0 2 .   

 

p
0

pk p  
k

{   }

{   } {    }

pk(   )filter
filter ( )q

 

 

The supposition that the generic set   filterU q  can be constructed at any finite 

stage leads to a contradiction.  Suppose  kq p .  Then since kp  is finite there must be 

some n  such that both     filtern q  and for the statement   S n q  we have 

   kn q p .  That is     kn q p  and   S n q  is undecided at kp .  Then by Rule 3 

above we have  q n q , which is   n q q ; hence     filtern q .  So we obtain 
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    filtern q  and     filtern q , a contradiction.  Hence, the supposition  kq p , that 

q is constructed at some finite stage is false.  This is because  filter q  is defined by 

an inductive procedure that take us out of the sequences of lattices, 

0 1 1, , ... , , , ...k kL L L L , of countably infinite lattice points to transcend it.  Hence, no 

generic set is “constructible” in the sense of recursively enumerable.  The generic 

sequence 


 lim k
k

q p  represents an inductive rule in the language, K, for enumerating a 

series of lattice points indefinitely below any given lattice point  0p , and the 

contradiction arises from assuming that     nq p  can be completed at some definite 

point, which is the same as assuming that a generic set    filter filter nq p  is 

completely defined by a lattice point  np , which would make it a principal filter.  The 

“non-constructibility” of a generic set arises from the fact that no countably infinite 

lattice is atomic, which entails that there are always lattice points lying below any 

notional atom, and the contradiction arises from assuming that a finite set of 

conditions kp  defines an atom.  Only an atom could define    q p  and no such 

atom can be reached by any recursive procedure.   

14.3 Numbers and functions 

Transcendental numbers may be viewed as both numbers and functions.  For example   is a 

number, but it is also a function:      : ,  such that 

             1 3 2 1 3 4 4 2  

Every transcendental number encodes a function and every function codes a transcendental 

number.  The ultrafilters generated by forcings comprise functions that generate 

transcendental numbers.  It is the ultrafilters that belong to the derived set, not the 

transcendental numbers.  Nonetheless, the derived set may be embedded in a larger lattice in 

which for each transcendental number,  , there is an atom,   . 

 

 

15.  Transcendental numbers 

15.1 Liouville numbers 

We have already seen that a real or complex number is algebraic if it is the zero of a 

polynomial with integer coefficients.  It is a result that every algebraic number   is the zero 

of some irreducible polynomial f that is unique up to constant multiple.  The degree of  , 

denoted   is the degree of the polynomial f. 
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15.1.1 Liouville’s theorem 

Let   be an algebraic number with degree  1n .  Then there exists a  c c  

such that   
n

p c

q q
 for all  , 0p q . 

 Proof 

Let  f x  be an irreducible polynomial with root  .  The mean value theorem is 

     
 


   


,

f b f a
f a b

b a
.  On substituting 

r
b

s
 we obtain, 

 
 

  


   
    


,

r
f f

rs
f

r s
s

.  Hence, since    0f ,  .           
   

r r
f f

s s
 

If    1
r

s
 the result is trivially true because   

1
1

n

r

s s
.  Then, for the 

non-trivial case, suppose    1
p

q
.  Then   

p

q
,    1

p

q
 and   1 .  

As   1  we have   is close to  .  At   we have    0f , so    0f  as 

  .  That means that    0f , which means that for given   there is a 

   0c c  such that   
1

f
c

.  Thus   
1

f
c

 where    0c c .  From  

          
   

r r
f f

s s
 we obtain,          

   

r r
f f

s s
.  Then substituting   

1
f

c
 

gives, 
      

   

1r r
f

s c s
.  This gives,      

 

r r
c f

s s
.  But f is irreducible, hence 

   
 

0
r

f
s

 and the integer 
   
 

1n r
q f

s
.  Hence,   

n

r c

s s
 as required.32 

15.1.2 Example of a Liouville number 

Let 






       !
2 3! 4!

1

1 1 1 1
10 ... 0.110001000000000000000001000...

10 10 10 10
n

n

.  

 Let 

 



  ! ! !

1

10 10 10 1,2,3,...
j

j n j
j j

n

r s j  

Then ,j jr s  are relatively prime rational integers.   

 
32 Barker [1975] states that an explicit value for c is given by  


 

121
1

n
n h

c
 where h denotes the height 

of  , which is the maximum of the absolute values of the coefficients of f.32 
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         



   

 
 

             1 !! 1 2
!1 ! 1 !

1

10 1 10 1 1 1 1
10 10 1 10 10 ...

9 9 9 1010 10

jj n
jj jj j j

n jj j

r

s s

 

By Liouville’s theorem, if   is algebraic, then 
 

 
1

j

js
, so   must be transcendental. 

15.1.3 Theorem, transcendental numbers are generic (+) 

Where   is the transcendental number of the preceding example,    filterU  is an 

ultrafilter and generic set in the derived set, 2 . 

 Proof 

Let 1 2, , ... , , ...kS S S  be a recursive enumeration of statements such that 

    
2! !

1 1 1
...

10 10 10n k
S q . 

Let  

        
 

  

    

          
    

                
    

0 0

1 1 0

1 12! ! 2! !

0 0 0

1 1

10 10

1 1 1 1 1 1
... ...

10 10 10 10 10 10k k kk k

p p q q

p p p q

p p p q

 

That is   1k k kp p S .  The following diagram illustrates this proof. 

 

p
0

K

q

p
k

p
0

{   }

p
k{   }

U =  filter ( )

p
k+1{     }

p
k+1

= 1
10

1
10

1
10

+ + ... +  q
2! k!

undecided statement at p
k{   }

  

transcendental number

{ }

atom of the 
extended  lattice

2

 

Let an ideal be defined by the inductive rule: - 

 
        

2! ! 2! 1 !

1 1 1 1 1 1
... ...

10 10 10 10 10 10
k k

q q  
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Then, for a contradiction, let  kq p  where k .  This entails that   is algebraic.  

Then by Liouville’s theorem 
 

 
1

k

ks
 where  !10k

ks .  But by the preceding result 

 
 

1
k

ks
.  Hence  kq p  and  filter q  is a generic set.  Define    such that 

 filter q  is principal and  q . 

15.1.4 Definition, Liouville number 

A Liouville number is any real number   that possesses a sequence of distinct 

rational approximations   1,2,3,...n

n

p
n

q
 such that   

1
n

n

n n

p

q q
 where 

   lim sup n .   

 

In the section on the Mahler classification of transcendental numbers [Section 16] I will show 

all Liouville numbers are transcendental.  Let us proceed to provide a second concrete 

example demonstrating that transcendental numbers are added to the continuum by generic 

ultrafilters.  In Liouville’s theorem the condition   
n

p c

q q
 is a forcing condition on a 

generic sequence. 

15.2 The number e 

Hermite proved in 1873 that the number e is transcendental.  The presentation of his theorem 

that follows here is due to Baker [1975].33 

15.2.1 Hermite’s theorem 
e is transcendental. 

 Lemma 1 

Let   f x  be any polynomial of real coefficients of degree m.  Let 

     0
t t uI t e f u du  

where t is an arbitrary complex number and the integral is taken over the line joining 

0 to t.  Integration by parts gives: - 

 
33 Baker’s treatment could be said to be “light”.  A fuller treatment is in Burger and Tubbs [2004], though 

that is not more perspicuous.  For the purposes here it is not required to clarify every inference, since the 

aim here is soley is to show that Hermite’s proof constructs e as a generic set. 
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   

   

     



 





     

    







0

1

0
0

1

0

0

t t u

t
tt u t u

t
t t u

I t e f u du

f u e f e

f t e f f e

  

and repeated integration by parts gives: - 

         
 

  
0 0

0
m m

j jt

j j

I t e f f t  

Lemma 2 

Let  f x  denote the polynomial that is obtained from f by replacing each coefficient 

in f with its absolute value.  Then 

      0
t tt uI t e f u du t e f t  

Proof of the theorem 

1. Suppose e is algebraic.  Then there exist integers 0 1, , ... , , 0nq q q n  such that 

   0 1 ... 0n
nq q e q e . 

Let  

        0 10 1 ... nJ q I q I q I n  

where  I t  is defined as in the lemma and        1 1 ...
p ppf z z z z n  and p 

is a large prime.  Substituting          
 

  
0 0

0
m m

j jt

j j

I t e f f t  we obtain: - 

 

                         

           

   

     

  

 

                     
          
                     
          

 

     

  



0 1
0 0 0 0 0 0

0 1
0 0 0

0 0

0 0 1 ... 0

1 ...

m m m m m m
j j j j j jn

n
j j j j j j

m m m
j j j

n
j j j

m n
j

k
j j

I t q f f t q e f f q e f f n

q f t q f q f n

q f k

 

where    1 1m n p .  We have      0jf k  if   and 0j p k  or if 

  1 and 0j p k .  Hence, for all j, k except   1 and 0j p k  we may say 

that    jf k  is an integer divisible by !p .  Furthermore,  

            1 0 1 ! 1 !
np ppf p n  

from which it follows that if p n , we have    1 0pf  is an integer divisible by 

 1 !p  but not by !p  Then, if  0p q , we have J is a non-zero integer 

divisible by  1 !p .  hence    1 !J p  
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This establishes one estimate for J  which is based on the first lemma and 

applies on the assumption that e is algebraic. 

2. To obtain another estimate, note that     2
m

f k n  and this combined with 

      0
t tt uI t e f u du t e f t  

from the second lemma, gives 

    1 ... m p
nJ q q ne f n c  

where c is independent of p.   

3. If p is sufficiently large the two estimates are contradictory, whence e cannot 

be a root of an irreducible algebraic polynomial. 

15.2.2 Theorem e corresponds to a generic ultrafilter (+) 

  filterU e  is an ultrafilter and generic set in the derived set. 

 Proof 

Let   filterU e  be the consequences of everything that follows from the 

assumption that e is the zero of a function f; that is    0f e .  That is 

     filter   iff  0e f e  . 

In the proof of Hermite’s theorem we assume that e is algebraic.  This is 

equivalent to the assumption that f is an algebraic function; hence there exist 

integers 0 1, , ... , , 0nq q q n  such that    0 1 ... 0n
nq q e q e .  This information is 

encoded in a finite set kp , and the assumption is that  kq p .  This assumption 

is shown in Hermite’s proof to decide two contradictory statements.  Given 

         0 10 1 ... nJ q I q I q I n  

where     0
t t uI t e f u du , we have: - 

1.   1 !J p  

2.  pJ c . 

Since this is a contradiction violating the Fundamental Principle of Number 

Theory, these statements cannot be so decided.  Hence  kq p  and   filterU e  

is a generic set. 

 

The assumption that e is algebraic is equivalent to the claim that     ke p  can be constructed 

at a finite ordinal level k  corresponding to a condition kp ; but this assumption always 

leads to a contradictory statement at that level. 
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15.3 The Axiom of Constructibility 

A constructible set is one that can be defined by a formula of first order set theory by an 

inductive procedure from the null set.  The class of all constructible sets is denoted L.  The 

universe of all sets is denoted V.  The Axiom of Constructibility is V L .  The generic set 

construction was used by Cohen to establish that any model in which there is a generic set is 

one on which the Axiom of Constructibility is false.  This is phrased in a conditional form: if 

there is a generic set, then the Axiom of Constructibility is false.  Here we have shown that, 

subject to the Axiom of Completeness, there is a generic set.  We have two specific examples, 

the ultrafilters defining a particular Liouville number and the number e.  Hence we have 

proven the following theorem. 

15.3.1 Theorem, the Axiom of Constructibility is false on the arithmetic continuum (+) 

The Axiom of Completeness entails V L . 

 

16.  Mahler’s classification of the transcendental numbers 

16.1 Approximating one rational number by another 

Let 
p

q
 be a rational approximation of rational number 

r

s
.  We are always bounded away from 

r

s
 by a constant multiple of 

1

q
.  In particular, 


  

1rq psr p

s q sq sq
.  We see that 

p

q
 from any 

other rational approximation to it by a closed interval. 

 

 r
s

p
q

p
q+

1
q nM 1

qnM+

s  

 

Burger and Tubbs comment that “Rational numbers are precisely those numbers that cannot 

be well-approximated by other rationals.”  In the potentially infinite Cantor tree, 2 , rational 

numbers correspond to branches of finite length.  These branches are separated by a finite 

interval; one cannot make the branch representing 
p

q
 converge on the branch representing 

r

s
 

where 
r p

s q
.  It is for this reason that the set  is totally disconnected in  . 
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s

p
q

r
s

pushed
apart 

 

16.2 Irrational algebraic numbers 

Irrational numbers may be subdivided into those that are algebraic, and those that are 

transcendental.  The algebraic numbers behave in a way that is similar to the rational 

numbers.  Liouville’s theorem gives us a criterion for when a number   is algebraic. 

16.2.1 Criterion for algebraic numbers 

There exists a  c c  such that   
n

p c

q q
 for all rational numbers, p

q
.  It is 

customary to write 
1

M
c

 and express this condition as,   
1

n

p

q Mq
. 

 


p
q

p
q+

1
qnM 1

qnM+

s

(                       )

 

 

So for algebraic numbers,  , they are still bounded away from any near rational 

approximation.  This relates to the result we noted earlier that every algebraic number may be 

correlated with some lattice point in Fin.  There is some way to encode the construction of an 

algebraic irrational number using finite information.  So algebraic numbers do not require 

encoding by actually infinite branches within the derived set. 

16.2.2 Corollary to Liouville’s theorem, transcendental Liouville numbers. 
Let   be a real number such that there exists an infinite sequence of rational numbers 

n

n

p

q
 such that, 

 
  

1n
n

n n

p

q q
.  Then   must be a transcendental number.  It is 

defined to be a Liouville number. 
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For Liouville numbers the situation is now reversed.  Instead of being pushed apart from any 

rational approximation, there is a sequence of rational approximations to any Liouville 

number that is squeezed together with it. 

 



2
qns = 

(                            )
qn

1


0

p
q

0

0

+
q n

1

0

p
q

n

n

0
 

 

16.2.3 Theorem, Every Liouville number is a Cohen real (+) 
There will always be two nearest approximations to a Liouville number,  , one lying 

below it and one above, both with denominator nq .  These both converge on   

without ever becoming identical to it.  The theorem shows that they are squeezed 

together by an open set, here shown as 
   

 
 
  
 
 

1 1
,

n n

n nq q
.  In the limit the 

measure of this open set becomes incommensurable with zero.  Although the two 

branches are still distinct, they cannot be separated by any measure.  The Liouville 

number lies within this open set, and is not identical to either of its boundaries.  

Hence, any Liouville number is a Cohen real.  The sequence n

n

p

q
 in the corollary to 

Liouville’s theorem is a sequence of boundary points, and comprises a meagre set, 

 
 

 
:n

n

p
n

q
.  By Cohen forcing this sequence defines a transcendental number,  , not 

belonging to to this (or any other) meagre set; so a Liouville number is a Cohen real. 

16.3 Transcendental numbers in general 

A number is transcendental when it is not a zero of any nonzero polynomial in    t .  We 

will examine polynomials     P z t  for which  P  is nonzero but as small as possible 
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relative to the degree of  P z  and the height of  P z .  If   is transcendental the zeros of 

polynomials that approximate   form a sequence that converge on  .  A transcendental 

number corresponds to an infinite branch in the Cantor tree, 2 , which has no actually infinite 

sequence of all 1s or all 0s.  (Such sequences are said to be stagnant.)  A transcendental 

number is “infinitesimally” close to some rational approximation. 

16.3.1 Definition, height of a polynomial 

Let      2
0 1 2 ...P x a a x a x  be a polynomial; then the height is given by 

    0 1 2max , , , ...h P a a a . 

16.3.2 Result 

Let   be a transcendental number,  P z  be a polynomial and  *  the zero of  P z  

closest to  .  Then if   P  then   
1

* Na . 

Proof 

Let        , 0P z t P  be infinitely many polynomials.  Suppose  P  is small then 

  must be very close to a zero of  P z .  Let  P z  be factored as    


 
1

N

n
n

P z z a  

where Na  is the leading coefficient. Let    0P , then: - 

  


  
1

0
N

N n
n

a a P . 

Let  *  denote the zero closest to  ; so,       * min : 1,2, ... ,na n N .  Then 

 

   

   


  



    

   


1

1

0 *

0 *

N
N

N N n
n

N

N

a a a P

P
P

a

 

Thus, if   P  then   
1

* Na . 

16.3.3 Dirichlet’s Theorem 

Let   .  Then there exists a constant  C C  such that for any positive integer H, 

there exist integers p and q, where   0 max ,p q H  such that: - 

  
C

q p
H

.   

Further, if H C , then  0q .  

Proof 

The central step involves an application of the Dirchlet Pigeon-hole principle. 

Begin by forming a collection of polynomials,       1 0 1 0 1 0, 0 , , ,iP z a z a a a H a a . 
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This can be seen as a “grid” of  
2

1H  polynomials with 1H  points for values of 

the variable 1a  along one axis and 1H  for 0a .  Then, for given   , we have 

 
2

1H  functions,  iP from this grid onto  .  An application of the triangle 

inequality shows that these are all bounded: - 

  iP B  where   1B H .   

So the values  iP  all lie within a closed, bounded interval    ,S B B .  Partition S 

into 2H  equal sub-intervals, then, by the Pigeon-hole Principle, for some i j , we 

have both  iP  and  jP  contained in the same interval.  Hence 

     
 


  

2 12
i j

B
P P

H H
 

Then, let          1 0 1 0,i jP a z a P a z a , and define 

    0 0 1 1,p a a q a a . 

It follows that   ,p q H , and the other conditions in the theorem also can be 

shown.  We also have       2 1C C . 

16.3.4 Theorem, Diophantine condition for irrationality 

For given    and H , let: - 

                    1 0, min : , 0,H P P z a z a z P h P H  

where  h P  is the height of the polynomial P.  Then define    ,H  by: - 

       ,, HH H  

       


 lim sup ,
H

H . 

Then   is irrational iff     0 . 

 Proof 

This is a summary of the proof, for further detail see Burger and Tubbs [2004].  The 

result is a generalisation of the situation with Liouville numbers.  Regarding Liouville’s 

theorem, we have for a rational number  
r

s
 the result that   

1
n

p

s Mq
.  This 

means that any rational approximation 
p

q
 to a rational number  

r

s
 can be 

separated or “squeezed apart” from that number by an interval that is always of finite 

measure (provided the limit is not taken, which is given for a rational number.)  For a 

Liouville number, which are transcendental numbers, the situation is reversed, and we 
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have an interval,  s , of finite measure such that there always exists a rational 

approximation lying in this interval:   
p

s
q

. 

In generalising this we appear (initially) to weaken the criterion to cover 

merely irrational numbers.  Thus, for a rational number  
r

s
 let 

p

q
 be any rational 

approximation to it, not identical to it, then the interval 

      
       

   

1 1
, ,

p p

sq sq q q
.  Again we can always squeeze apart a rational 

number from any other near rational approximation to it.  The notion that one 

interval is contained in the other is expressed in terms of Dirichlet’s theorem: 

 
1

q p
s

 where  
r

s
.  This follows from the Diophantine equation,  ax by c  

and when that has solutions.  Here   gcd , 1r s , so   1rq sp  has a solution. 

Now for an irrational number  , we can prove by means of the Dirichlet 

pigeonhole principle that the interval      
,

C C

H H
 always contains another rational 

approximation to it.  Specifically, H is a bound on the (algebraic) polynomials whose 

roots lie in an interval   
  

 
,

p p

q q
 for integers ,p q H .  Also, we specifically have 

     2 1C  so this is constructed.  So given that we have at least one close 

approximation to   lying inside the interval      
,

C C

H H
 we can let     ,H  be 

the least such approximation.  It is the least value  P  of all those polynomials with 

values close to  .  The theorem guarantees that this approximation lies within the 

interval      
,

C C

H H
.  To obtain the criterion for an irrational number explicitly, we 

define     ,H  by 


  
1

H
H

.  This is simply a recoding of the information 

contained in  , and by taking logs we have  
 

log

log H
.  Then the criterion,  

C

H
, 

on taking logs, implies: - 

 





 

  

 

1log log

log
1

log

log
1

log

H CH

C

H

C

H

 

Let         


  lim sup ,
H

H . 
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When H  we have log H ; hence 
log

0
log

C

H
.  Therefore, when H  we have 

  1 .  This entails that for   irrational, we have   0 . 

Using the preceding theorem it can be shown that   rational implies   0 .  

So the following equivalence is established: - 

  is irrational iff     0  

16.3.5 Summary of the Diophantine condition for irrationality 
1. Let   be an irrational number.  By the Dirichlet Pigeonhole Principle the 

interval      
,

C C

H H
 contains another rational approximation to it, where: - 

(i) H is a bound on the (algebraic) polynomials whose roots lie in an 

interval   
  

 
,

p p

q q
 for integers ,p q H .   

(ii)      2 1C . 

2. Let     ,H  be the least such approximation.  It is the least value  P  of 

all those polynomials with values close to  . 

3. Define     ,H  by 


  
1

H
H

.  This is simply a recoding of the 

information contained in  , and by taking logs we have explicitly, 

 
 

log

log H
.   

4. Then  
C

H
 implies  

log
1

log

C

H
. 

5. Let         


  lim sup ,
H

H . 

When H  we have log H ; hence 
log

0
log

C

H
.   

Therefore, when H  we have   1 .  This entails that for   irrational, we 

have   0 . 

6. Using the preceding theorem it can be shown that   rational implies   0 .  

So the following equivalence is established: - 

  is irrational iff     0 . 

 

We need to extend this theorem to provide a criterion for when a number is not merely 

irrational, but transcendental.  Transcendental numbers are non-algebraic.  This generalization 

is provided by the generalized version of Liouville’s theorem and an extension of Dirichlet’s 

theorem. 
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16.3.6 Generalized version of Liouville’s theorem 

Let   be an algebraic number of degree d, and let N be a positive integer.  Let  P N  

be the degree of a polynomial P, and  h P  its height. Then there exists a positive 

constant   ,c c N  for all     P z z ,  P N  and    0P , such that: - 

 
  

  
1d

c
P

h P
 

 

A detailed proof may be found in Burger and Tubbs [2004]. A proof outline follows below.  

This theorem replicates the situation of Liouville’s theorem for all algebraic numbers; so it 

means that any number not satisfying the condition 
 

  
  

1d

c
P

h P
 is transcendental, not 

merely Liouville.  It also generalises the most recent result above from rational to algebraic 

numbers, or, conversely, from irrational numbers to transcendental numbers.  It may be 

observed in general that if   is an irrational but algebraic number, the minimum polynomial 

for it demonstrates that it may be encoded by finite information.  This is because its 

continued fraction is recurring.  Algebraic numbers have finite codings. 

In the proof we start with an algebraic number  .  So it has a minimum polynomial 

 f z  of degree  d f .  So any polynomial of higher degree which has   as a zero has f as a 

factor.  This in turn means that any algebraic approximation to  , say  , must have a 

minimum polynomial P with degree   K P d .  Then it can be shown that 

 
 

     
  

1d

c
P

h P
.  The proof is really just a lot of algebra with summations and 

products. 

 16.3.7 Definition, “conjugates” 
The zeros of the minimum polynomial for   are said to be its conjugates. 

16.3.8 Proof outline of the generalized Liouville Theorem 

Let  


     
0

d
m

m
m

f z a z z  be the minimum polynomial for  . 

Let   1 2, , ... , d  be the conjugates of  , where   1 .  Then we may write: - 

   


 
1

d

d m
m

f z a z . 

Now suppose we have  



0

K
k

k
k

P z b z  where K N , and let   1 2, , ... , K  be its zeros.   

Then,    


 
1

K

K k
k

P z b z .   

Then, after some algebra we have:    0P  implies  m k  for all m, k. 

Consider: - 
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      
   

    
1 1 1 1

1 1k d k k

m k k k
k m k kd d

f f
a a

 using  


     
0

d
m

m
m

f z a z z  

But similarly: - 

              
      

         
1 1 1 1 1 1 2

1 1 1k d d K d d d

m k k m m m md d
k m m k m m mK K K

P P P P
b b b

 

since  



0

K
k

k
k

P z b z  and   1 . 

Putting the two together we get: - 

 
 

   














1

2

k
d

K k
k

d
K

d m
m

b f
P

a P
. 

It may be shown that the numerator here is a positive integer, so this gives: - 

 
   









2

1
d

K

d m
m

P
a P

 

Furthermore,             
 

        2

0 0

1 ...
K K

KK K
m K m K m m m m

k k

P b b h P . 

Putting     1 2max , , ... , dA  and  h P  as the height of P as usual; we have: - 

 
  

  
1d

c
P

h P
 

where 
     

   
12

1 1

1 ...
N dn

d

c
a A A A

. 

16.3.9 Theorem, Extension of Dirichlet’s Theorem 

Let   be a complex number and N a positive integer.  Then there exists a constant 

  ,C C N  such that for any positive integer H, there exists a non-zero polynomial 

    P z z  with degree  P N  and   h P H  such that: - 

 



1N

C
P

H
. 

16.3.10 Summary of the proof 
A detailed proof may be found in Burger and Tubbs [2004].  

From the proof we see that the constant in this formula is given by: - 

           
2

, 6 2 1 ...
N

C C N . 

Let   be a complex number and let H and N be positive integers.   

1. Define 

            , :  and P N H P z z P N h P H  
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This is the set of polynomials with degree  P N  and height   h P H .  Let 

us think of P  and  h P  as independent variables spanning 2 , so that N, H 

define a subspace, and             , :  and P N H P z z P N h P H  is a 

subspace of the ring of all polynomials,    t .  For given  , each of 

polynomial in  ,P N H  takes a given value.   We may think of these as points 

in the space:        : ,P P z P N H .  

 

P

h P(  )

H

N

P N H ( , )

 

 

2. In the above diagram we think of the points as values of  P .  If   is 

transcendental, then    0P .  Since    0P  implies that   is a root of P, 

then we know that if   has a very close polynomial approximation, P, then 

 P  is close to zero.  The condition  



1N

C
P

H
 gives an upper bound to 

 P  and proves that every number has a rational approximation.  So we 

then take the best approximation to   that is available within the region 

 ,P N H .  This is give by: - 

               , , min : , , 0N H P P z P N H P  

 

P

h P(  )

H

N

P N H ( , )

P (  )

   ( ,  ) = min { (  )  } N, H P  
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3. As we let H and N grow, the density of the approximations to   increases and 

we get a sequence of improving approximations to  , in the sense that  P  

gets closer and closer to zero.  However, we recast the information given in 

  , ,N H  by defining: - 

   
1

NH
 

 Or in full, let    , ,N H  be given by,     
 

, ,

1
, ,

N H N
N H

H
. 

Then by taking logs we get: - 

    
 

log
, ,

log
N H

N H
. 

What this means is that as   , ,N H  gets smaller,    , ,N H  gets bigger.  

That is why at the next stage we are looking at the supremum of    , ,N H  as 

opposed to the infimum. 

4. We need to take limits in this expression.  The theorem allows us to do this, 

we successively define: - 

       


, lim sup , ,
H

N N H  

       


 lim sup ,
N

N . 

5. Then, the number   is transcendental iff     0 . 

 

The criterion     0  affirms that the approximation   , ,N H  has gotten so close to   

that the interval  P  is incommensurable with zero.  Adopting the principle or “axiom” that 

extensions are never annihilated [Section 10.4.6.] and also in accordance with the Axiom of 

Completeness, what this means is that   P  for all   .  So  P  is still an extension, 

it is simply that we cannot measure its size.  All transcendental numbers lie within such 

extensions.  We have already seen that Liouville numbers, which are Cohen numbers  , are 

boundary points lying in open intervals of size   P .  Our main task now is to track down 

the amoeba reals and identify what kind of transcendental numbers they are. 

16.3.11 Definition 

Let     for the least positive integer N for which     ,N . 

If    ,N  is finite for all N then       by convention. 

 

If     is finite, then      , but if       then     may be either finite or infinite. 
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16.3.12 The Mahler classification 

A number     0        

S-number     0        

T-number             

U –number             

 

We claim that the S numbers are amoeba reals.  The following theorem is vital to 

demonstrating the validity of this claim. 

16.3.13 Theorem for S numbers 

Let    be a transcendental number.  Then     0  iff there exists a real 

number   0  such that for each integer  1N , there exists a constant    , 0c c N  

such that for all integers  1H  and all polynomials     ,P z P H N , the inequality, 

  



N

c
P

H
 holds.   

 

A proof may be found in Burger and Tubbs [2004].  

16.3.14 The construction of the constant in the above theorem 
The constant is explicitly constructed as follows: - 

1. Since     0  there exists a   0,  such that    ,N . 

2. Then for fixed N and all but finitely many H’s we have, 

       
1

, ,
N

N H P
H

. 

3. Let there be a list of the exceptions for H to the rule        
1

, ,
N

N H P
H

.  

Write this list as   1 2 ... LH H H  for some finite L.  Let 

    min , , : 1, 2, ... ,m N H l L . 

4. Then         
 

, min 1,
2

N
L

m
c c N H . 

 

This theorem asserts that the growth rate in the Extension to Dirichlet’s Theorem cannot be 

improved.  A constant multiple of N  is the best possible exponent on H iff     0 .  S-

numbers are precisely those transcendental numbers   for which  P  cannot be made 

substantially smaller than the upper bound in the Dirichlet Extension Theorem, which was 

found by application of the Pigeonhole principle.  Recall, that that upper bound was given by, 
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 



1N

C
P

H
.  Combining this with the inner bound of the theorem for S numbers, we obtain 

the inequality: - 

  



 

1 NN

C c
P

HH
. 

 

s < 


C

H
N - 1


C

H
N - 1


c

H
N


c

H
N

s  <    

 

The diagram illustrates that in the limit, as N , the transcendental S number,  , is 

identified with the interval,   
    

 
,

N N

c c

H H
, and is itself squeezed into a measure 

incommensurable with zero,  
 

   
 1 1

,
N N

C C

H H
.  On the principle that extensions are 

never destroyed any S number is an extension point. 

16.3.14 Theorem, S numbers are amoeba reals (+) 
We have just proven this result. 

 

The number e has been proven to be an S number.  The classification of   is unknown.   

Burger and Tubbs remark that the existence of T-numbers was only established in 1968 by 

Wolfgang Schmidt. 

16.3.15 Further classification 
It remains to classify the other numbers.  Here we cite a series of results for this 

purpose. 

 

1. Algebraic numbers are A numbers. 
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2. Liouville numbers are U numbers. 

3. “T-numbers are precisely those  ’s for which we have infinitely many 

polynomials     P z z  such that  P  can be made substantially smaller 

than the upper bound of Theorem 6.5 but the degrees of those amazing 

polynomials must be unbounded.”  (The reference is to Burger and Tubbs 

[2004] Theorem 6.9 page 162.] 

 

We have already established that the Liouville numbers are Cohen reals.  The result (3) above 

also makes T numbers into Cohen reals, a conclusion that will shortly be confirmed when we 

consider the measure of the sets of these separate categories of number. 

16.4 Mahler’s number 

16.4.1 Theorem, relation between the point at infinity and Mahler’s number (+) 

There exists a bijection between initial segments of   and Mahler’s number, 

 0.12345678910111213141516...M  . 

Meaning of segment 

Suppose  0.0000123...x  .  Then 0.00001 is a segment of x.  (In this case it is also an 

initial segment.) 

Proof outline 

  well-orders the potentially infinite antichain         1 , 2 , 3 , ... .  So   must have 

at least as much structure as  , since every element of   is in one-one 

correspondence, in order, with an element n . 

Illustration 

 is a transcendental number representing the next nearest number to 1 in the unit 

interval.  Likewise, there is a number like   that is the next nearest number to 0 in the 

unit interval.  We may think of this number as a member of   that comprises an 

infinite sequence of 0s followed by Maher’s number: - 

0.0000 ... 00012345678910111213141516 ... 

It is any number with an equivalent structure: for example, an infinite sequence of 0’s 

followed by a 1, followed by an infinite sequence of 0’s followed by a 2, and so forth.  

Every natural number must follow in order in the sequence somewhere.  Its order type 

is  1 .  We think of   as the result of subtracting this number from 1. 

Proof of the theorem 

Mahler’s number is  0.12345678910111213141516...M  

M is the infinite sequence in   given by: n n . 

        1 , 2 , 3 , ...  is the potentially infinite antichain of unordered elements. 

By the Nested Interval Principle [Section 4.1 above] and by the fact that   is 

not a skeleton for   0,1 ,    is not empty.  Therefore,    .    cannot be an 
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algebraic number, for then it would be a meet in Fin.  So   is a transcendental 

number, or a set of transcendental numbers.  If it is a set of transcendental numbers, 

let   be the least transcendental number in   .    

There exists a well-ordering of   external to  .  Therefore, there is a well-

ordered set that well-orders  .  This well-ordering is an intrinsic property of the 

continuum.  Therefore, it is intrinsic to the skeleton.  Since    is the complement in 

  of  :    , then    is a well-ordered set that well-orders  .  Since   is a 

collection of atoms each of which may be placed in one-one correspondence with   

and    well-orders  , then there is a map of segments of   on to .  Denote the 

nonzero segments of   by        1 2, , ... , , ...ns s s .  Then 

         1 21, 2, ... , , ...ns s s n . 

Then there is bijection,   nn s n .  That displays it as a bijection onto 

Mahler’s number. 

16.4.2 Corollary 
   is a Cohen real. 

Proof 

   represents the neighbourhood of 1 in the unit interval.  It is open interval in   0,1 .   

Hence it is dense in itself.  Its measure is     0m .  Therefore    is a null set.  

Since   belongs to a null set it cannot be an Amoeba real; since all transcendental 

numbers are either Cohen or amoeba, it is a Cohen real. 

17.  Posets and forcings in general 

17.1 The abstract character of forcing 

Up to this moment we have used two different though related characterisations of the forcing 

arguments.  Both concern conditions given in a poset,  , described in a language K, which 

corresponds to or “talks about” the Cantor set, or more specifically, the derived set of the one-

point compactification of the continuum.  We first described forcing in very abstract terms; 

for example, we defined Cohen forcing to be the process of extending a potentially infinite 

branch within the lattice of boundary points to an actually infinite.  We later gave a more 

concrete description of forcing in terms of posets in a forcing language corresponding to 

lattice extensions: - 

 

1. Within the forcing language K we describe a poset  to possess an increasing chain of 

conditions,    0 1 ... ...kp p p  , given by set inclusion,   1 1 iff  k k k kp p p p .  These 

correspond to a chain of filters in the lattice,     0 1filter filter ...p p  
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  ... filter ...kp , and since at the finite stage these are all principal, to a descending 

chain of lattice points,         0 1 ... ...kp p p .  These are conceived as belonging to 

ever-increasing embeddings of finite lattices, all contained with the lattice of all finite 

subsets of  , denoted Fin.   

2. At every stage there is a forcing rule that specifies that a given member of the poset, 

q  , cannot be given by any finite member of the poset:  nq p   for any n .  

The assumption that it does leads to a formal contradiction.  This may be further 

expressed by saying at at the level n  there exists in the poset,  , incompatible 

elements,  ,n np p   such that   n np p . 

3. We then postulate that corresponding to q   there is a filter,  filter q , which is a 

family of subsets within the Cantor set, 2 .   

4. Since  filter q  cannot be constructed at any finite level  nq p  , it follows that we 

must extend the chain in   to a chain of ordinal length actually infinite.  In all cases 

so far considered, this is of order type  . 

 

To convert this description into a more abstract one, we consider a ground model M, which is 

a countable transitive model of a finite part of ZFC.  G will be a generic filter, and in general, G 

is not a family of subsets contained in M.  Hence   M G  will be a generic extension of M.  The 

filter G will be defined by a poset,  , which, since the discussion almost universally takes 

place within the context of first-order set theory, is actually a family of sets contained in the 

ground model M.  This enables M to describe and define its own generic extensions.  In order 

to define a generic filter, G, the essential properties of the poset,  , are: - 

 

(a) That the conditions in   form an infinite chain; in this case   is said to be dense. 

(b) That the condition q lies in   and cannot be reached by any finite chain of conditions 

starting from some initial condition 0p  . 

(c) That at every level in   there is an antichain, or a pair of incompatible conditions.  

This means that in order to construct the filter,   filterG q , one must complete an 

actual infinity. 

17.1.1 Definition, dense partial order 

Let ,  be a partial order.  D   is dense in   iff          p q p q D . (Kunen 

[1980] p. 53) 

17.1.2 Definition, generic 
Let   be a partial order.  G is said to be  -generic over M iff G is a filter on   and 

for all dense     , 0D D M G D . (Kunen [1980] Chapter 7, Def. 2.2, p. 186) 
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17.2 Relative consistency results 

Kunen explains the idea behind relative consistency results: “Let M be a countable transitive 

model for ZFC.  If ,  is a partial order … and  , M , then ,  will yield a method of 

obtaining a generic extension, N, of M, which is also a model of ZFC.  By varying , , we 

shall be able to produce a variety of relative consistency results.” (Kunen [1980] Chapter 7, 

Sec. 2, p. 186) 

17.2.1 Definition, Martin’s Axiom 

 MA  is the statement: Whenever  ,P  is a non-empty c.c.c. partial order, and D is 

a family of   dense subsets of P, then there is a filter G in P such that 

       0D G DD .  MA is the statement        2 MA . 

17.2.2 Results 

1.  MA  is true. 

2.  MA 2  is false. 

 Outline of proof of (1) 

 MA  follows from the Completeness Axiom.  The result,  MA , is regarded as a 

general result in ZFC about countable models: If M is countable and p  , then there 

is a G which is  -generic over M such that p G . (Kunen [1980] Lemma 2.6 p. 55)34 

Out line of proof of (2) 

It is an application of Cantor’s anti-diagonalisation argument.  We begin by assuming 

that there is a denumerable list of all functions  : 2h .  This constitutes a partial 

order: 1 2, ,... , ...nh h h .  So we can define a dense subset of this partial order, hE .  Then 

by  MA 2  this defines a generic set G.  This in turn defines a function  : 2Gf  

contradicting the assumption that we had listed them all. 

 

 MA  only becomes relevant if there is a cardinal,     0
0 2 .  We will subsequently 

demonstrate that the Completeness Axiom entails  0
12  [Section 18], so this also entails 

 1MA  is false.  To be explicit, this is the conditional statement: if the Completeness Axiom 

is valid, then  1MA  is false.  What set theory has done is to implicitly open up the 

 
34 However, I have some problems with the proof in Kunen, which seems to be circular by assuming the 

existence of the filter G which is is intended to prove.   MA  is equivalent to allowing the  completion 

of  a potentially infinite sequence to an actually infinite one, thus defining a limit.  This is precisely what 

the Completeness Axiom allows us to do.  The truth of  MA  in ZFC set theory is an example of the 

implicit use of the Completeness Axiom and also arises from identifying  . 
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possibility of defining other structures on the continuum.  Ultimately, the validity of the 

Completeness Axiom will become an empirical question.  Within first-order set theory all sorts 

of alternative models are possible.  Kunen [1980] explains this point as follows: “The 

particular axioms of set theory that   M G  satisfies beyond ZFC will be very sensitive to the 

combinatorial properties satisfied by   in M; most of these properties are not absolute.  For 

example, consider the c.c.c.  If M is a c.t.m. and M , then in V,   is countable and thus 

trivially has the c.c.c.   But   may well fail to have the c.c.c. in M.”   

 Here we will give two illustrations from Kunen’s work of the use of iterative Cohen 

forcing to produce alternative models of the continuum.  The idea is to give the “flavour” of 

the concept rather than the details, since our topic is the question of what follows specifically 

from the Axiom of Completeness.   

17.2.3 Examples of forcings 

1.    Fn ,  

Here   Fn ,  denotes the set of all partial functions from   into  .  Since   

is uncountable, this poset does not satisfy the countable chain condition. 

 In the ground model, M, we have   . 

 In the generic extension   M G  we have   . 

This forcing is used to show that the notion of cardinality is not absolute for 

M, or absolute in ZFC.  A set may have cardinality    in the ground model, 

and cardinality    in the extension,   M G . 

2.    Fn ,2  

 This satisfies the countable chain condition. 

 In the ground model, M, we have    and  , 2  are incomparable. 

 In the generic extension   M G  we have    2 . 

  Since   can be anything, this falsifies CH. 

 

The obvious point to make about these forcings is that they do not directly have any bearing 

on the second-order Completeness Axiom, which tells us how to complete the arithmetical 

continuum: starting with a dense subset,  , we create a collection of all linear orderings of 

elements of  , and then identify the members this set with the reals.  The partial order that is 

being considered is just   Fn ,2 , which is Cohen forcing, and the completion in question 

concerns the closure of potentially infinite binary sequences by actually infinite sequences.  It 

is the step from the potential to the actual, from  to   that is considered, which implies 

 MA .  But further consideration reveals that Cohen forcing constructs only the boundary 

points of the continuum, and therefore leaves over another collection of extension points, 

since boundaries never diminish n measure of an interval.  So we have in addition to Cohen 

reals, amoeba reals.  Amoeba reals are not generated by any forcing in the same sense in 
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which other reals are – there is no poset to which an individual amoeba real corresponds.  The 

Completeness Axiom implicitly rests on a second primitive notion of extension, namely, that 

space is always comprised of spaces.  Therefore, we additionally need amoeba reals generated 

by actually infinite nested sequences of open intervals that are now identified with S numbers.  

We have the following theorem. 

17.2.4 Forcing theorem (+) 
All transcendental numbers correspond to ultrafilters (functions) of Fin and Cofin 

embedded within the Derived set, 2 , of the actually infinite one-point 

compactification of the arithmetical continuum. 

 Remark 

 We have already shown that all Liouville numbers and the number e are generic sets.   

Proof 

Let   be a transcendental number.  In the Extended Dirichlet Theorem, we construct a 

series of approximations   ,N HP  where 

               , , min : , , 0N H P P z P N H P   

and    
 

log
, ,

log
N H

N H
.  Since   is transcendental, we also have     0 .  

  ,N HP , is a series of algebraic codes that correspond to lattice points within the set 

of all finite subsets of  :     Fin F 2  or the set of all co-finite subsets of  : 

    Cofin C 2 .   The conditions, 

               , , min : , , 0N H P P z P N H P  

       


, lim sup , ,
H

N N H  

       


 lim sup ,
N

N  

together constitute a set of forcing conditions and define a poset,   .  This poset is 

open, dense and at each finite level the assumption that the number   is defined by a 

polynomial immediately leads to the contradiction:     0 .  The conditions, 

    0  and     0  determine incompatible lattice points at any finite level.  

Therefore, the poset    defines a generic ultrafilter within Fin or Cofin. 

17.3 The dependency of the Mahler classification 

Liouville’s theorem depends explicitly on the Mean Value theorem which in turn rests on the 

Completeness Axiom.  The two critical principles used throughout these arguments, leading to 

the Generalized Dirichlet Theorem are: - 

1. The second-order Axiom of Completeness 
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2. The Dirichlet Pigeonhole Principle. 

The Mahler classification is a consequence of these two principles.  We may summarise the 

entire logic of the arguments of this paper up to this point as follows: - 


  
 



1-point compactification of the skeleton of the real line
Dirichlet Pigeon-hole Principle

Mahler classification of transcendental numbers
Axiom of Completeness

Forcing theorem

 

17.4 The Mahler classification and measure 

The following definition comes from Burger and Tubbs [2004] (Section 6.6, p.167) 

17.4.1 Definition, “almost all” 
We say that almost all complex numbers are in a particular set X if the complement 

 X  is a set of measure zero. 

17.4.2 Theorem 
Almost all numbers are transcendental. 

 Proof 

Burgess and Tubs remark that, “the statement of the theorem is equivalent to 

establishing that the set of all algebraic numbers is a set of measure zero.”  We have 

already proven above that the set of all algebraic numbers is a set of cardinality 0 . 

 

The following are results proven in Burgess and Tubbs [2004].   

17.4.3 Theorem 
1. The set of U numbers is a set of measure zero. 

2. The set of T numbers is a set of measure zero. 

17.4.4 Corollary 
Almost all numbers are S-numbers. 

 

The proof of the important corollary is non-constructive.  While the other proofs show that 

the sets of A, U and T  numbers have measure zero, the proof that the set of S numbers have 

measure 1 (in the unit interval) works backwards from the fact that the measure of the unit 

interval is 1.  That is: - 

 

Proof of the corollary 

         
     
 

    

  



      
  



* * * * * 0,1 1

* * * 0

* 1

A S T U

A T U

S

 

(Here  *  represents measure.) 
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For this reason the definition “almost all” is “almost” a mild abuse of language.  Or rather, it is 

a question of understanding thoroughly what “almost all” means.  It does not mean that there 

are more S numbers than any of the other numbers.  The cardinality of the other sets 

combined is continuum, which can be seen from the manner in which they care constructed 

from the Cantor tree.  Likewise, the cardinality of the S numbers is also continuum.  (The set 

of S –numbers is proven indirectly to be of second category; but the set of Liouville numbers is 

second category; so we cannot say there are more S numbers than Liouville numbers; from the 

cardinality point-of-view, there are just as many of the one kind as there are of the other.)  So 

“almost all” does not indicate “larger” in the sense of cardinality.  This argument simply 

confirms that the S numbers (the amoeba reals) are not boundary points but extensions.  [See 

above, Theorem 16.3.14.]  It confirms that on the arithmetical continuum subject to the Axiom 

of Completeness the principle of the indestructibility of extensions is a consequence. 

 

18. The Derived set and the continnum hypothesis 

18.1 Derivation of the Continuum Hypothesis from the Axiom of Completeness 

Here we prove that the Completeness Axiom entails the Continuum Hypothesis.  However, this 

does not prove the Continuum Hypothesis in an absolute sense.  It does show that it is 

implied by the natural conception of completing the rational numbers provided by the 

Completeness Axiom, which is used time and again in all analysis, implicitly or explicitly; we 

mean, that analysis that takes place outside the formulation of first-order set theory. 

18.1.1 Lemma [Halbeisen [2012] 

For every ordinal   1  there is a set of rationals     0,1Q  and a bijection 

  :h Q such that for all                , , h h . 

Proof in Halbeisen [2012], Lemma 4.10 p. 77. 

 

Halbeisen remarks that this means that for any   1  there is a set of rationals, 

    0,1Q  such that    ,Q  where   is the order type of the well-ordering of Q .  

Since the lemma states that the function is a bijection, this makes the set Q  unique: that is, 

to each well-ordering of the rationals there corresponds a unique ordinal   1  and 

conversely.  The proof gives a method of constructing this bijection.  Hence we have: - 

18.1.2 Corollary 

1  is the set of order types of well-orderings of  . 

 

From this Halbeisen [2012] shows that there is a surjection from the open interval  0,1  onto 

1 ; hence,   0
1 2 . 
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18.1.3 Theorem, the Completeness Axiom entails the Continuum Hypothesis (+) 

Any well ordering is an element of   2 P , and conversely.  However, if   is 

regarded as a potential infinity, its power set is also only potentially infinite, and 

hence of cardinality 0 .  So in order to obtain an actually infinite skeleton of the 

continuum, we must treat   as a completed infinity – not merely potential one.  We 

adjoin to   an “infinite” element to obtain a model        by analogy with  .  

The lemma then gives us: - 

      
1 1card card 2 . 

But, with the one-point compactification of the continuum, we obtain a skeleton that 

completely determines the structure of the Cantor set.  We obtain: - 

     card card 2c  

Now since we have    , or alternatively,        0card card , then 

  2 2 . 

Whence          0
12 card 2 card 2c . 

Hence,   12  which proves CH on the arithmetical continuum with skeleton   and 

also   2 2 . 

 

The Dedekind Completeness Axiom states: Any non-empty subset of   which is bounded 

above has a least upper bound (supremum) in the set [Section 4.1].  If we replaced   here by 

  then the continuum becomes the set of all well-orderings of   and then by Corollary 

18.1.2, 1  is the set of order types of well-orderings of  , so  1c .  This is essentially the 

situation with the Cohen reals shown here to be the set of all well orderings of  .  Although 

there are other amoeba reals in the continuum, the Axiom of Completeness entails the Heine-

Borel theorem, and that in turn entails that we construct a one-point compactification for the 

skeleton of the continuum, and obtain the continuum as its derived set.  The continuum 

cannot be null, so we must decompose the skeleton into two disjoints sets: one of boundary 

points and the other of intervals.  Nonetheless, taken together, the two parts to the skeleton 

comprise a single skeleton, denoted  .  This has order type  1, and the continuum, 

generated as the Derived set, has cardinality            1
1 1card card card 22 .  Whence, 

 0
12  or  1c .  Another way of looking at this is that the continuum comprises three 

disjoints sets of reals: the algebraic reals of cardinality 0 , the Cohen reals of cardinality c  

and the amoeba reals, also of cardinality c .  The Axiom of Completeness does not add more 

amoeba reals than Cohen reals, and for the Cohen reals we have    1card Cohen . 

 Fundamentally, the Completeness Axiom imposes the “simplest” structure admissible 

on the continuum subject to the following constraints: (a) real numbers are generated as limits 
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of potentially infinite sequences from its dense subset,  ; (b) the “Axiom” of the 

indestructibility of extensions. 

18.1.4 On the need for AC 
This proof of CH ultimately does not depend on the Axiom of Choice.  One can use it 

as a hypothesis that can then be dropped.  Reason.  Once one has established  0
12  

as the correct cardinality of   then if we drop the well ordering of the infinite 

element      the resultant structure has exactly the same number of lattice points 

after as before.  We refer to the model        where   is a potentially infinite 

un-ordered antichain that partitions the unit interval. 

 

As the mapping     1: P  of the Lemma 18.1.1 is a bijection, it has an inverse: 

   1
1: P .  This gives a bijection of the Cohen reals onto 1 :   1

1: 2 .  Every element 

in  P  is a branch in 2 .  Given    P 2  which is entailed by the Axiom of Completeness,  

then      represents all atoms, both boundaries and extensions, and    P 2  is its 

Derived set.  So this is the elusive bijection of all real numbers onto 1 .  The Completeness 

Axiom entails the Continuum Hypothesis. 

18.2 The Derived set and the arithmetical continuum 

The problem we address here is the issue of whether the Derived set is homeomorphic to the 

arithmetical continuum,  .  I have claimed that the Derived set, 2  is categorical for  .  In 

ZFC the Derived set is equinumerous to the Cantor set, 2 , though the question of what 

additional axioms in ZFC are needed to bring about an isomorphism between them is still 

open.  MA  is already a theorem of ZFC, but additionally we require 

        0MA , 2c .35  It is a claim made here that the Cantor set is consistent with any 

number of interpretations of the continuum, but still we would expect the Derived set to 

inherit all the properties of the Cantor set that can be derived in ZFC – in particular, that it is 

nowhere dense and totally disconnected.  But if that is so, how can the Derived set be a model 

of the continuum? 

 The resolution of this problem is found in the observation that the Cantor set is first 

category (meagre) in  , but second category in itself.  As a model of the continuum, the 

Derived set is second category in itself, and hence dense, connected, separable and 

continuous.  

 
35 I doubt whether any first-order theory could suffice to delineate the same model.  It seems that the 

continuum can only be delineated in a second-order theory. 
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 This possibility arises from the nature of the Second order reasoning that is employed 

here.  Recall that the Axiom of Completeness is irreducibly second order.  The nature of this 

background logic is as yet to be examined; to be sure I must presume that the arguments 

displayed here are consistent deductions in second order logic, possibly supplemented by 

natural language argument.  Part of this implicit background machinery is the conclusion that 

second-order logic permits us to impose simultaneous structures on an object and to view it 

both internally and externally.  Internally, the skeleton of the continuum is an unordered 

antichain; externally, it is a well-ordered chain in one-one correspondence with  . 

 Another dual structure that is essential to this work emerges when we interpret the 

relationship between the set   and the unit interval,    0,1 .  As a set   is the actually 

infinite collection of all finite ordinals as well as its upper bound; it is discrete and totally 

disconnected.  As an interpretation of the skeleton of the continuum it is a partition of the 

unit interval into   segments each of which is a half-closed, half-open interval:  1 2,q q  where 

1 2,q q .  As such the skeleton is a connected space homeomorphic to the unit interval.  We 

further decompose this skeleton into two sub-skeletons [Section 10.3]: - 

 

  A  The skeleton of atoms of boundary points corresponding to rational numbers, 

collectively both a null and meagre set, with cannoical representation: - 

        1 , 2 , 3 , ... .   

The atom   , which represents the neighbourhood of 1, is not a member of 

this collection. 

 B  The skeleton of co-atoms of the derived Cantor set of the continuum; these 

are open intervals and collectively neither null nor meagre sets.  The co-

skeletton  has cannoncial representation: - 

                1 , 2 , 3 , ... . 

The co-atom           is not a member of this collection and 

represents the neighbourhood of 0 in the interval   0,1 .   

 

Both sub-skeletons are isomorphic to  , and indistinguishable from it in ZFC; in second-order 

logic they are very different.  The power set of   A  is a perfect subset of the 

continuum, isomorphic to 2 , comprises all algebraic numbers and Cohen reals, totally 

disconnected and first category (meagre) in the Derived set,   2 .  The power set of the 

second set is not identical to a Suslin line but constructs one, comprising amoeba reals of 

  2 . 

 These results may all seem very new; but in point of fact what has been achieved here 

is largely a collation of results from other sources that have been very well documented.  For 

example, it seems that the authors of transcendental number theory did not appreciate the 



 ON THE CONTINUUM 

© Peter Fekete 106 23 February, 2013 

relevance of their work to the problem of the continuum.  There is also a proliferation of 

terminology and a tendency to duplicate results. 

 As an example of this proliferation, let us now observe that the Derived set is identical 

to the Dedekind-MacNeille completion of  .  The presentation that follows is due to Davey 

and Priestley [1990] where proofs of any results may be found. 

 

1. Let x   denote the ideal:   :x y y x  where   is any partially ordered set.  

Note   could comprise a single antichain, and this is the case in this context, where is 

is a skeleton. 

2. We derive a lattice,    by means of the mapping: - 

 
 


 


x x

 


 

3. Specifically, let   be a collection of join-irreducible elements.  This means that every 

element of   is not the join of any other elements of  .  If  x y z  where ,y z   

then x  .  Then    is a derivation from   comprising the lattice of all ideals 

generated from  . 

The meaning of this may not immediately clear, but the map   gives 

instructions for the derivation of    from   as follows: (a) Given  , find the 

power set,  P  .  Identify all the join-irredicible elements of   and take only those 

ideals that are allowed by relations in  .  In   the maximal element, 1  , defines a 

down-set, so every admissible ideal is included in    with the exception of those 

deleted by the relations in  .  Two examples should further clarify this procedure. 

 

 Examples 

 3.1 Let L be the following lattice: - 

   

The join irreducible elements (shaded in the above diagram) are given by 

 L : - 

1

2

4

3

 

The power set is   1,2,3,4P  but of these elements not all belong to   . 
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     
     
     
     
   

 

1,2,3,4 1,2 1

1,2,3 1,3 2

1,2,4 1,4 3

1,3,4 2,3 4

2,3,4 2,4

3,4

  

  

  

  

 



 

 This gives the lattice   : - 

 

 

{1} {4}

{1,2,4}

{1,4} {3,4}

{1,3,4}

{1,2,3,4}

 

In this case it is a replica of the original lattice.  This is always the case for 

any distributive lattice and is the meaning of the Birkhoff Representation 

Theorem. 

 3.2 An antichain generates the whole power set. 

   ( )  

4. Then the Dedekind-MacNeille completion of  , denoted  DM   is isomorphic to 

  .  This illustrates the proliferation of terminology, since the two structures are 

essentially the same. 

5. It is a result that for any Boolean lattice with skeleton  , we have: - 

       DM P   . 

6. Davey and Priestley [1990] remark: 

 “It is not difficult to see that every real number x  satisfies 

       
x x x   and hence that   is both join-dense and meet-dense in 

    , .  Consequently     ,  is (order isomorphic to) the Dedekind-

MacNeille completion of  .” (Examples 2.38, p. 44)  The Dedekind-MacNeille 

completion of   requires an actually infinite skeleton, which is our     ; hence 

  is here identified with the Derived set, 2 , and the theory advanced here is just a 

more explicit exposition of that idea. 
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7. Furthermore, Davey and Priestley [1990] add: “For any set X, the complete lattice 

    DMX PP  where          : :P x x X X x x X .” 

 If we substitute   for X in this, and identify the P in the above expression with  , 

the skeleton of the continuum, we obtain our decomposition: - 

             : :n x n n . 

 On completion of the lattice algebra we require an actually infinite skeleton, so we 

require: - 

          A B . 

 We observe, again, that here we interpret   as a representative of the unit interval, 

and so as having positive measure 1. 

 

Thus, to adapt the words of Davey and Priestley [1990] above, by dropping the caveat “order 

isomorphic”, the arithmetical continuum just is the Derived set; so certainly the Derived set is 

homeomorphic to the continuum.  This is, of course, all subject to the Axiom of Completeness 

and the Dirichlet pigeonhole principle. 

 But there is a little more we can say about this homeomorphism in order to make it 

even more explicit.  The Derived set is generated from its skeleton.  This skeleton is a 

decomposition of the unit interval    0,1  in which there are no gaps, and hence continuous 

and connected.  Now we show that the Derived set is the continuous image of    0,1 .  The 

derivation is effected by the powerset operation:     
    2 P P 2 .  To quote from 

Davey and Priestley [1990]: “We may regard the maps  L J L  and  P   as playing a 

role analogous to that of the logarithm and exponential functions.” (Chapter 8, p. 172.)  Here 

the map  L J L  is the anti-derivation of the map  P   and takes a lattice L to its set of 

join-irreducible elements and the map  P   is the power set operation as indicated 

above:       DM P   .  The power set operation,   exp nn 2 , in set theory when defined 

on finite ordinals n  just is ordinal exponentiation and is a monotonically increasing 

continuous map.  The question is what happens when we reach  ?  Here ordinal 

exponentiation and cardinal exponentiation diverge; however, in our model of the continuum 

we require the map to progress continuously and smoothly into the neighbourhood of 1 in the 

unit interval.  In ZFC set theory the possibility exists that there is a jump discontinuity at  , 

so that      1P 2 .  However, the Completeness Axiom closes off this possibility by 

requiring the continuum to be smoothly generated from the well-orderings of its dense 

skeleton.  Thus, under the exponent map the Derived set is the continuous image of its 

skeleton.   

 I must add something more to these remarks in order to clarify in what sense the 

power set operation, as an exponential function, is continuous.  In general topology a function 
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:f X Y  is continuous if  1f U  is open in X whenever U is open in Y.  So we need to 

investigate what are the open sets in the skeleton.  Considering the lattice of boundaries: - 

 

G

G

G1

2

3

 

 

The boundary points are closed sets belonging to open intervals; these form nested sequences 

of G  sets. This tree extends downwards and generates the boundaries in the potentially 

infinite skeleton of the continuum.  The lattice (Boolean algebra) that is derived from it has 

exactly the same appearance, only in this Boolean algebra the atoms appear as a set of linearly 

independent vectors – atoms – a subset of size   within the entire tree 2 .   

 

0
0
0
0

0
0
1
0

0
0
0
1

0
0
1
1

0
1
0
0

0
1
0
1

0
1
1
0

0
1
1
1

1
0
0
0

1
0
0
1

1
0
1
0

1
0
1
1

1
1
0
0

1
1
0
1

1
1
1
0

1
1
1
1

P 2 (  ) =  
 

 

Rearranging this as a root system, in which each atom of the dense subset is a root of a 

cluster of reals: - 
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{1} {2} {3}

…
G G G

 

We see that a set is open in the skeleton iff it is open in the algebra: - 


    in  in G G 2 . 

Thus the derivation is continuous and the Derived Set is homeomorphic to the arithmetical 

continuum under the Axiom of Completeness. 

18.3 Binary representations of real numbers 
For any real x  in the skeleton we have the standard binary expansion which maps x 2 .  

(Levy [2002] Theorem 3.5 p. 236.)  This is not technically a bijection because the finite 

fractions correspond to two binary expansions.  For example: - 

    
13 1 1 1

1,1,0,1,0,0,0, ... ,0,0,0, ... 1,1,0,0,1,1,1, ... ,1,1,1, ...
16 2 4 16

 

where the lists are actually infinite – that is, an actually infinite list of 0’s in the first, and an 

actually infinite list of 1’s in the second.  But in the limit, these two lists are incommensurable 

and are identified as points; they are no longer identifiable in the continuum as distinct 

branches in the Cantor tree.  So we have a bijection between the reals and the sequences in the 

Cantor tree.  We have a continuous bijection between the real line and the Derived set, so they 

are homeomorphic. 

I shall conclude with saying a little more about the binary expansions of real numbers.  

A Cohen real is identified with the space between two terminal branches of the Cantor tree of 

the dense set of boundaries: - 

 

(          )
 s <  

 

The two termini belong to the same terminal node, which at the  th stage are 

incommensurable; so the branches are indistinguishable on the continuum, even if they might 

be distinguishable elsewhere.  Hence, a Cohen real has just one binary expansion, and is 

approximated at any given stage by just one binary approximation. 

 The situation for amoeba reals is more complex. 

 



 ON THE CONTINUUM 

© Peter Fekete 111 23 February, 2013 

 s < 

(       )ds

 s < 

1

2

An amoeba
is the  squeezed
within adjacent 
branches of the 
tree of boundary points.

 real
ds

The adjacent branches
are also in the  limit
incommensurable.



tree of
boundary points

tree of intervals

branch
length



 

 

Here we see that a amoeba real lies between different branches of the Cantor tree.  The 

interval between these branches is squeezed to an incommensurable measure, here shown as 

  2s , but it is the essence of a amoeba real to have two approximations.  At the final level 

these are incommensurable, but at every prior stage an amoeba real is represented as an 

interval.  This confirms the fundamental difference between Cohen and amoeba reals, and the 

distinction in the Mahler classification of transcendental numbers between U, T numbers on 

the one hand, which we here identify with the Cohen reals, and the S numbers on the other, 

which we here identify with the amoeba reals. 
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