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 Abstract 
 
  

 

 

This is a discussion paper.  No part of this paper may be considered to be true until verified 

by competent authorities.  This paper contains putative proofs of the following propositions: - 

 

1. Proof of the validity of Poincaré’s thesis that the principle of complete 

induction cannot be embedded into an effectively computable sub-

domain of any model corresponding to a sufficiently strong first-order 

theory – that is, a theory which is an  instance of formal analytic logic. 

 

2. Solution to the Halting problem. 

 

3. Proof that the identification within set theory of the set of all natural 

numbers,  , with the set of all finite ordinals,  , leads to 

contradiction. 

 

4. Demonstration that the proof of Lagrange’s theorem is not effectively 

computable. 

 

5. Proof that transcendental numbers are defined by generic sequences. 

 

6. Resolution of the Liar paradox. 

 

7. Resolution of Berry’s paradox. 

 

8. Resolution of Grelling’s paradox. 

 

9. Demonstration that there exists a synthetic logic; that is, a logic that is 

not a formal analytic logic. 

 

This paper also expounds a neo-Kantian philosophy of mathematics and advances a 

transcendental deduction to prove that no metaphysical conception of the mind based on the 

assumption that first-order set theory is effectively computable is adequate to account for 

human knowledge. 

 

The author of a graduate of philosophy of Cambridge University and holds Bachelors and 

Masters degrees in mathematics from the Open University. 
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CHAPTER 1  
 

 
Poincaré’s thesis 

 

 

 

 

1 Strong AI and formalism  
 

The claim that machines are intelligent is denoted by AI, which stands for Artificial 

Intelligence.  “The objectives of AI are to imitate by means of machines, normally electronic 

ones, as much of human mental activity as possible, and perhaps eventually to improve upon 

human abilities in these respects.” (Penrose [1989] p.14)  The claim that machines can “think” 

as we humans do, are “intelligent” and “conscious” just as we are, is denoted by strong AI.  

“According to strong AI,” as Penrose explains, “... mental qualities of a sort can be attributed 

to the logical functioning of any computation device, even the very simplest mechanical ones, 

such as a thermostat.” (Penrose [1989] p.21)1  By effectively computable or recursive is meant 

any process that is performed by a digital machine.  The aim of this paper is to refute the 

doctrine of strong AI.  The methodology of this paper is to achieve this by developing further 

mathematical insight into the nature of proof to show that no effectively computable process 

can match it. 

In proofs we encounter axioms and rules.  Traditionally, the axioms were regarded as 

primitive propositions apprehended by “the mind” by means of “intuition”.  Such a philosophy 

of mathematics does not cohere with Strong AI, which is consistent with a view of 

mathematics known as formalism.  Formalism maintains that axioms may be mechanically 

formed in a language whose syntax can be recursively enumerated as a list; the rules are 

transformations of expressions of the formal language into other expressions.  It is assumed 

that the operations of all rules and axioms thus given can be physically simulated in a 

machine.   

 

According to formalism the central concept in mathematics is that of a formal 

system.  Such a system is defined by a set of conventions ... we start with a list 

of elementary propositions, called axioms, which are true by definition, and then 

give rules of procedure by means of which further elementary theorems are 

derived.  The proof of an elementary proposition then consists simply in 

showing that it satisfies the recursive definition of elementary theorem. (Curry 

[1954], p. 203) 

                                                           
1 The term strong AI is due to John Searle.  Other terms used in the literature are functionalism and 

computationalism. 
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I shall take this quotation as a definition of formalism.2  Sometimes with formalist theories 

reference is made to semantics and in particular to model theory.  Yet here there is no 

primitive notion deployed of meaning, intension or concept.  The relation explored in effective 

formal semantics between a language and its model is conceived as another effective relation 

between one structure and another.  In the formalist conception of semantics we don’t break 

out of the formalism into anything other than more formalism.  In the mathematics of formal 

systems there is only syntax: semantics is given by syntax.  Curry, a nominalist, regards 

interpretation of the language of mathematics as irrelevant: “Why not abolish the object 

language altogether and understand that the tokens are objects which we can take as symbols 

if we want to?” (Curry [1954], p. 204)  Such nominalism is an essential aspect of formalism 

and proponents of strong AI must adopt it. 

 

2 Formalism and ZFC 
 

Formalists require a working version of mathematics.  Their favoured theory is known as ZFC, 

which stands for Zermelo-Fraenkel set theory with Choice.  (See Chap. 2 / 1.3.4)  This is also 

regarded as a first-order theory, meaning that it is embedded in a theory of formal logic 

known as the first-order predicate calculus.  This preference is reflected ubiquitously in the 

literature: - 

 

Most logicians (though perhaps not most mathematicians) are convinced that all 

correct proofs in mathematics could, with enough effort, be translated into 

formal proofs of first-order logic.  (Wolf [2005] p.29) ...  ZFC is a remarkable 

first-order theory.  All of the results of contemporary mathematics can be 

expressed and proved within ZFC, with at most a handful of esoteric exceptions.  

Thus it provides the main support for the formalist position regarding the 

formalizability of mathematics.  In fact, logicians tend to think of ZFC and 

mathematics as practically synonymous.  (Wolf [2005] p.36) 

 

Set theory is the foundation of mathematics.  All mathematical concepts are 

defined in terms of the primitive notions of set and membership.  In axiomatic 

set theory we formulate a few simple axioms about these primitive notions in an 

attempt to capture the basic “obviously true” set-theoretic principles.  From 

such axioms, all known mathematics may be derived.  However, there are some 

questions which the axioms fail to settle, and that failure is the subject of this 

book.  (Kunen [1980] p.xi.) 

                                                           
2 Formalism in this sense should not be confused with the earlier philosophy of mathematics that 

originates in the work of Hilbert and which also is called formalism.  Although a historical antecedent of 

the modern formalism of which Curry is a representative, this older philosophy has a very different 

foundation, and should be called Hibertism.  I discuss it below [Chap. 16, Sec. 4].   

 Chap. 1 ] FORMALISM AND ZFC [ Sec. 2 
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No arithmetical conjecture or problem that has occurred to mathematicians in a 

mathematical context, that is, outside the special field of logic and the 

foundations or philosophy of mathematics, has ever been proved to be 

undecidable in ZFC.  (Franzén [2005] p.33) 

 

There is an obvious immediate objection to formalism, which is that many of the statements 

and axioms of ZFC refer to entities that could not possibly be effectively computable.  

Examples are (1) the Axiom of Infinity, which states that an infinite collection exists, and (2) 

the Axiom of Choice, which states that it is possible to well order every collection whatsoever, 

even though no such order can be explicitly given.  Formalists meet this objection with one of 

two strategies.   

2.1  Constructivism 
 

The first is to reject the use of those statements that refer to actually infinite collections.  This 

philosophy is known as constructivism.  “Any computation that can be performed by a finite 

intelligence – any computation that has a finite number of steps – is permissible.” (Bishop 

[1967] p.3)  An even more stringent version of this theory is strict finitism, which maintains 

that no infinitary operation is admissible in mathematics whatsoever.  In this sense strict 

finitism does not allow any symbol for an infinite collection whatsoever: so by this token any 

mathematical formula employing the symbols   or   would be inadmissible in mathematics.  

This defence is discussed in Chapter 14 (Section 2.3). 

2.2  Juggling finite sequences of symbols 
 

The second, more favoured approach, is to treat axioms governing infinite objects as also 

mere formal symbols whose operations can be captured by mechanical processes.   

 

The Formalist can hedge his bets.  The formal development of ZFC makes sense 

from a strictly finitistic point of view: the axioms of ZFC do not say anything, 

but are merely certain finite sequences of symbols.  The assertion ZFC   

means that there is a certain kind of finite sequence of finite sequences of 

symbols – namely, a formal proof of  .  Even though ZFC contains infinitely 

many axioms, notions like ZFC   will make sense, since one can recognize 

when a particular sentence is an axiom of ZFC.  A Formalist can thus do his 

mathematics just like a Platonist3, but if challenged about the validity of 

handling infinite objects, he can reply that all he is really doing is juggling finite 

sequences of symbols.” (Kunen [1980] p. 7) 

 

                                                           
3 Platonism in the philosophy of mathematics is the doctrine that mathematics refers to abstract entities 

and properties existing in a supra-sensible objective reality. 

 Chap. 1 ] FORMALISM AND ZFC [ Sec. 2 



© Peter Fekete ] 4 [ 06 Oct. 2011 

 

 

As the quotation indicates, this juggling symbols defence represents a second type strict 

finitism combined with nominalism4: in this view the symbols themselves have no meaning 

and all mathematics is a form of “juggling finite sequences of symbols”.  A property is said to 

be decidable if there is some effective procedure which, given any object, produces the answer 

yes if the object does have the property and no if not.  The following comes from a book 

entitled Computable Set Theory; it shows how ambiguous the status of ZFC in this juggling 

symbols defence is: -  

  

We are interested in methods that could be automated, at least in principle; it is 

hence obvious that none of our methods will be applicable to full set theory.  It 

is in fact known that no variant of set theory that deserves this name is 

decidable. (Cantone et al. [1989] p.13) 

 

My underlining.  It would appear that there is both a computable set theory and a non-

computable set theory.  We must, therefore, guard against a possible conflation of meanings 

attached to the word “decidable”.  It is true that proofs decide theorems, but in the context of 

effective computability, “decidable” means there exists an effectively computable procedure; it 

does not mean, “there is a formal proof”.  The prima facie evidence, as indicated by the above 

quotation, is that in general formal proof in first-order set theory is not effectively computable.  

Furthermore, if not all of ZF (or ZFC) is effectively computable, and the claim that all of known 

mathematics can be written in ZFC, then it follows: not all of known mathematics is effectively 

computable.  So I conclude proponents of strong AI must believe that if ZFC formalizes any 

known part of mathematics then that known part of mathematics is thereby effectively 

computable.  There is a sense in which all of known mathematics is trivially effective.   

 2.3  The glorified typewriter 
 1. Scan the known result together with its valid proof into a computer. 

This converts the characters of the book to Ascii code (or some such) 

and thence into machine code. 

 2. Click on the scan and print. 

  This converts the machine code back into intelligible language. 

The computer has produced a statement of the theorem together with its valid 

proof.  I shall call this procedure the glorified typewriter. 

 

Nobody does suggest that a glorified typewriter has ever checked or proven any theorem.  

However, this trivial procedure acts as the lower limit on what shall not count as a 

demonstration that mathematics is effectively computable.  We need a test or criterion of 

what shall count.  (The Turing Test is discussed below [Chap.13, Sec.1].)  For the present, let 

us examine the position of theorem checkers in relation to the glorified typewriter. 

                                                           
4 Nominalism denies the existence of abstract objects and universals to serve as the referents of general 

terms.  In the philosophy of mathematics nominalism is diametrically opposed to Platonism. 

 Chap. 1 ] FORMALISM AND ZFC [ Sec. 2 
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The task of a proof verifier is not to discover proofs (except proofs of the 

elementary individual steps within larger, more challenging proofs).  Indeed, the 

mathematician or computer scientist using such a verifier will always know the 

proof of any theorem that they wish the verifier to accept.  The problem is that, 

as known to the system user, this proof ordinarily has far too many missing 

details, intuitive leaps justified by geometric or other relatively informal insight, 

steps to be handled by analogy with other arguments given earlier or ‘well-

known in the literature’, etc., for a computerized verifier to follow what is 

intended.  Thus, in designing a proof verifier, one must provide some means for 

the formalization of this layer of missing detail.  (Cantone et al. [1989] p. 3) 

 

The underlining is my own.  It is clear from this that a proof checker falls well below the bar 

required to demonstrate that mathematics is effectively computable.  Proof checkers are 

sophisticated versions of the glorified typewriter or perhaps spell-checker.  The symbols are 

finite objects but what they denote often is not.  For example, suppose I read in a text the 

following: - 

 

... the least nonrecursive ordinal 1
c  is the recursive analogue of 1 , the first-

uncountable ordinal (Barwise [1975] p. 2) 

 

I see the symbols 1
c  and 1  both of which denote structures that by their very nature could 

not be an input of any actual digital machine – for they denote objects that are non-recursive 

and infinite.  But as symbols they are finite and may have some Ascii or machine code 

attached to them.  Therefore, all theorem-checkers that represent non-recursive and non-finite 

objects operate on the finite symbols or their machine code equivalents and not on the objects 

that they denote.  They operate forms of equation logic and are simulations of first-order set 

theory rather than first-order set theory itself.  Hence, if a theorem-checker produces a valid 

proof of a theorem that is no conclusive evidence to the effect that the theorem itself is 

effective.  Since the class of decidable theorems is always admitted to be less than the class of 

all known theorems, there is no reason to suppose that a theorem checker is much more than 

a glorified typewriter.   

2.4  Computational speed 
 

Computers are useful aids to combinatorial problems – that is, calculations.  I certainly would 

not challenge my pocket calculator to a competition as to which of “us” can multiply six digit 

numbers faster; but the fact that my calculator is much better at this than I am does not 

encourage me to conclude that it can think.  A problem that depends on speed of computation 

is likely to be more solvable by a computer than by a man, precisely because understanding is 

not involved.     For this reason, too, a computer in combination with human intelligence could 

 Chap. 1 ] FORMALISM AND ZFC [ Sec. 2 
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be a more powerful theorem builder than either alone – at least, in problems that rely on a 

mixture of insight (provided by the humans) and computational muscle (provided by the 

machines).  This is illustrated by the four-colour problem5.   Michael Beeson in The 

Mechanization of Mathematics (Beeson [2003] p.) describes Robbins conjecture6 “rediscovered” 

and proven by the computer program EQP.  It lies well below the bar required to simulate 

mathematical creativity; it is a problem in equation logic that depends on finite combinatorics.   

 

3 Prima facie argument against formalism 
 

There are difficulties too with the statement: “It is an empirical fact that all of mathematics 

presently known can be formalized within the ZFC system”7.  There is a problem with this 

claim as to an “empirical” fact and its validity may be seriously doubted.  I have never read a 

single mathematical text that is written in first-order set theory (ZF or ZFC).  As an empirical 

fact this claim appears to be refuted by every textbook, monograph, paper and 

communication, written or verbal of every mathematician, living or dead!  It may be that some 

of these books are about structures that are defined in first-order set theory, but the books 

themselves are not written in that theory.  In these books it is the meta-text, the gloss, that is 

the mathematical text, which is written in a mixture of second-order logic and natural 

language.  Not only is the gloss that is written in this way, but the bulk of the proofs too.  

Consider the following theorem – to which I append one line taken from the proof: - 

 3.1  Theorem 

If   : ,f a b  is Riemann integrable over    ,I a b , then there exists a sequence 

of partitions  kP , kP , such that 1kP  is a refinement of kP ,  1,2, ...k , and  

      
 

 lim lim
k kP Pk k

S f S f A f . 

  Proof 

... Now for any two partitions P and P , the set P P  yields a partition 

Q that is the common refinement of P and P  ...8 

                                                           
5 Any map may be coloured by four colours.  Proven with the assistance of a computer by Appel and 

Haken in 1976 

6 The Robbins conjecture is that any structure satisfying the equations:     1 ;x y y x  

         2 ;x y z x y z            3 n n x y n x n y x  is a Boolean algebra. 

7 This is a statement made by Henson and quoted by Bringsjord and Arkoudas [2006] in Olszewski et al. 

[2006] p.72. 
8 This is an extract from p. 43 of Carter and van Brunt [2000] which is an introduction to the Lebesgue-

Stieltjes Integral.  I choose this example by randomly picking up a book on my desk, randomly opening it 

at any page and copying the first result I saw.  

 Chap. 1 ] PRIMA FACIE ARGUMENT AGAINST FORMALISM [ Sec. 3 
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One does not need to understand this extract “mathematically” to see that it is not a first-

order statement.9 The expression Riemann integrable denotes a second order property of 

functions; a partition is a finite set of numbers, but we are quantifying over sequences of 

these, so over sets of sets, which are equivalent to a second-order property; we have a relation 

between partitions (first-order sets) of refinement – so that relation is second-order.  In the 

proof we see that it progresses in natural language into which are interspersed various first-

order symbols; I would like to know what the ontological status of a “common refinement” is.  

There is no prima-facie empirical evidence whatsoever to suggest that human beings think in 

first-order set theory.  We work things out through meanings!10  

The prima facie alternative to formalism is the traditionally older philosophy that 

symbols are signs or tokens denoting concepts, which may also be called meanings or 

intensions.  This philosophy claims that when we operate formally with symbols we do so on 

the basis of our understanding of those meanings – so it is the meanings that constrain the 

manipulations.  It also claims that it is impossible to conceive of mathematics independently 

of the human endeavour to understand.  Subsequently, I shall develop this into a neo-Kantian 

philosophy of mathematics.  For the present I wish only to introduce it. 

 

4 Conflation of the potential with the actual infinite 
 

Among the concepts that are essential to our mathematical understanding are those of the 

potential and actual infinite.  The distinction between these shall be vital to the development 

of this paper. 

4.1  The potential and actual infinite 
In mathematical discourse we meet two differing conceptions of the infinite: the 

potential infinite and the actual.  The potential infinite is illustrated by the 

inexhaustibility of counting; for no mater how large a number we have reached 

it is always possible to count to a higher one merely by adding one more.  In the 

actual infinite we conceptualise the entire process of counting as a completed 

totality.   

                                                           
9 Second order statements quantify over properties, first-order statements do not. 
10 I am certainly not alone in making this assertion.  For example, in Mayberry [1994], we have a critique of 

the “curious doctrine” that “mathematical logic is to be identified with first-order logic”.  Mayberry claims 

that the theories of topological spaces, Hilbert spaces, Banach spaces, Noetherian rings, cyclic groups 

(etc), are second-order theories.  The eliminatory theories of arithmetic, geometry and analysis are also 

second-order theories.  He remarks, “First-order logic is very weak, but therein, paradoxically, lies its 

strength.  Its principal technical tools – the Compactness, Completeness, and Löwenheim-Skolem 

theorems – can be established only because first order logic is too weak to axiomatize either arithmetic or 

analysis.” (p.411)  He outlines the properties of second order logic, which is, nonetheless, “a powerful tool 

of definition: by means of it, and by means of it alone, we can capture mathematical structure up to 

isomorphism using simple axiom systems.” (p.412) 

 Chap. 1 ] CONFLATION OF THE POTENTIAL WITH THE ACTUAL INFINITE [ Sec. 4 
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The potential infinite is symbolised by  , which represents the 

inexhaustibility of counting.  The natural numbers are 0, 1, 2, ... .  Here the dots 

also indicate the potential infinite.  When we wish to talk of all the natural 

numbers – and conceive of them as a collection11 – we represent this by .  It is 

important to bear in mind that this collection is a potential infinity.   

In the actual infinite we have a conception of an infinite collection of 

objects – usually points or numbers – as given actually in its entirety.  The 

theory of actually infinite, or complete collections is set theory, which employs 

many symbols for such objects.  The first infinite collection is denoted by  .  

This is a collection of finite ordinal numbers – that is, numbers ordered in 

succession.  Whereas the collection of natural numbers, , is not bounded 

above, the collection of all finite ordinals is bounded above.  The ordinal   is 

conceptualised as another ordinal following in succession after all the finite 

ordinals. 

 

The two conceptions,  and  , can be seen to be wholly different as ideas.  Therefore, it 

would seem to be a fundamental error to conflate or equate the two, though this is in fact 

common practice. 

 

Ordinals are the order types of well-ordered sets.  They are the infinite 

analogues of the natural numbers, and in many respects they behave like the 

latter ones.  In fact, the finite ordinals are the natural numbers, and hence the 

transfinite class of ordinals can be considered as an endless continuation of the 

sequence of natural numbers.  (Komjáth and Totik [2000] p. 37) 

 

My underlining.  The two concepts are so different as concepts that the ideas expressed in this 

quotation would seem to be simply erroneous.  If it is an error, it is a common one.  However, 

there is the usual formalist defence: - 

 

It is a philosophical quibble whether the elements of   are the real natural 

numbers (whatever that means).  The important thing is that they satisfy the 

Peano Postulates. (Kunen [1980] p.19) 

 

The Peano Postulates (Chap. 2 /2.12) are a set of rules said to capture all the properties of the 

natural numbers.  The formalist defence is that it is only the rules and the syntactic 

manipulations they satisfy that matter.  Kunen rejects any attempt to identify what natural 

numbers might really be, which is consistent with his nominalism.  It is a fundamental 

contention of this paper  that the potential and actual infinite must not be conflated  and  that  

                                                           
11 I am implicitly employing a distinction here between collections that are sets and collections that may 

be something else  [See Chap. 2, Sec 1.3]. 

 Chap. 1 ] CONFLATION OF THE POTENTIAL WITH THE ACTUAL INFINITE [ Sec. 4 
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the real distinction between them has also real effects both in terms of mathematical 

structures and the formal rules to describe those structures.  This is immediately evident, for 

if by Peano Arithmetic we include the full second-order Principle of Complete Induction 

(Chap.2 / 2.12), then it is contentious to say that set theory based on   satisfies the Peano 

Postulates, and a real formal distinction between the two theories exists. 

 

5 The fundamental category 
 

The inexhaustibility of the potential infinite arises in us from the iteration of counting (or, 

indeed, any process).  We begin at 1 and by adding 1 more unit to it arrive at 2; we repeat the 

process and arrive at 3; and so on ad infinitum.  The following is a seminal comment by Weyl: - 

 

My investigations began with an examination of Zermelo’s axioms for set theory, 

which constitute an exact and complete formulation of the foundations of the 

Dedekind-Cantor theory. ...  My attempt to formulate these principles as axioms 

of set formation and to express the requirement that sets be formed only by 

finitely many applications of the principles of construction embodied in the 

axioms – and, indeed, to do this without presupposing the concept of natural 

numbers – drove me to a vast and ever more complicated formulation but, 

unfortunately, not to any satisfactory result.  Only when I had achieved certain 

general philosophical insights (which, incidentally, required that I renounce 

conventionalism12), did I realize that I was wrestling with a scholastic pseudo-

problem.  And I became firmly convinced (in agreement with Poincaré, whose 

philosophical position I share in so few other respects) that the idea of iteration, 

i.e. of the sequence of natural numbers, is an ultimate foundation of 

mathematical thought – in spite of Dedekind’s “theory of chains” which seeks to 

give a logical foundation for definition and inference by complete induction 

without employing our intuition of the natural numbers.  For if it is true that the 

basic concepts of set theory can be grasped only through this “pure” intuition, it 

is unnecessary and deceptive to turn around then and offer a set-theoretic 

foundation for the concept “natural number.”  Moreover, I must find the theory 

of chains guilty of a circulus vitiosus.13  If we are to use our principles to erect a 

mathematical theory, we need a foundation – i.e. a basic category and a 

fundamental relation.  As I see it, mathematics owes its greatness precisely to 

the fact that in nearly all its theorems what is essentially infinite is given a finite 

resolution.  But this “infinitude” of the mathematical problems springs from the 

very foundation of mathematics – namely, the infinite sequence of the natural 

numbers and the concept of existence relevant to it.  (Weyl [1994], p. 48 – 49) 

                                                           
12 Conventionalism is an alternative name in this context for formalism. 
13 Vicious circle; i.e. guilty of circularity. 
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My underlining.  Weyl correctly attributes to Poincaré the thesis that identifies the 

fundamental category of number as the foundation of arithmetic, together with its notion of 

potentially infinite iteration.  Let us briefly sketch the philosophy of mathematics that acts as 

the alternative to formalism.  This is the claim (1) that the sequence of natural numbers acts 

as a foundation of mathematical thought, it is a “basic category” and the idea of iteration is its 

“fundamental relation” and (2) that the principles of reasoning founded upon this 

fundamental relation, specifically, complete induction, is the basis of a synthetic logic that is 

not formalised in the analytic logic (first order mathematical logic). 

Frege attempted to replace number as a category by sets [Chap.2, Sec.2.7.2]; it is 

agreed his attempt failed.  It is agreed that any alternative definition of natural number from 

within set theory in terms of particular sets has failed.  This is known as Benacerraf’s 

problem. [Chap.16, Sec.3] If there are categories, then number is unchallenged as one of them.  

Nonetheless, formalists replace number by effective processes.  So the challenge is to show 

concretely that effective processes cannot replace number in this respect.  To do this requires 

a proof of Poincaré’s thesis: that mathematical induction is a synthetic principle of reasoning. 

One might object that there is nothing easier for a computer to do than count up.  

Adding 1 is surely the simplest recursive function [Chap2, Sec. 2.3] that there is, and is 

routinely proven to be so.  The reply to this is that counting for us embraces the potential 

infinite – we not only grasp the potential infinite, we in some sense, attain it – whereas for a 

machine counting is just a process that generates a list.  We program a computer to count up, 

and it starts to output the following: - 

 

1 11 111 1111 11111 ...  

 

The problem is with the dots.  How does the computer “know” when to stop?  If it does not 

stop then can the machine be said to be counting?  It is producing an infinite list, but then it 

doesn’t know when to stop and output something like, “This is an infinite list generated by the 

rule, add 1”.  If it does stop, what tells it to stop?  Perhaps it has been programmed with a 

finite number whose role is to act as a cut off point – for example, stop if the number of digits 

= 100 and print, “This is an infinite list generated by the rule, add 1”.  In the first case the 

machine does not halt, and in the second case the machine halts because it is processing an 

analytic function on 100n .  It is computing a partition of 100 into 100 separate digits.  

Also, if it does stop it must be programmed to interpret some sequence of 1s to represent 

infinity; this is because everything infinite in meaning can only correspond to a finite 

sequence in a computer.  Concerning the infinite computers run simulations upon finite 

strings.  So there is every reason to conclude prima facie that a computer is by no means able 

to count in the sense that we can count.  At best, computers may be said to analyse numbers, 

but they do not generate them.   
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 ounting up adds something new each time 1 is joined to a previous total.  In terms of a 

spatial analogy we are always progressing away from 1 and expanding our space14.  The 

natural numbers are synthetic on the way up and analytic on the way down.  Most particularly, 

the synthetic mode of generation contains a concept that no amount of analysis of any 

individual member of a sequence will reveal: the potential infinite. 

 

6 Poincaré’s thesis and proof by complete induction 
 

Proof by complete induction and its equivalent method of infinite descent rest upon “the idea 

of iteration, i.e. of the sequence of natural numbers”, which is “an ultimate foundation of 

mathematical thought”.  As Poincaré explains: 

 

The process is proof by recurrence.  We first show that a theorem is true for 

 1n ; we then show that if it is true for 1n  it is true for n, and we conclude 

that it is true for all integers. (Poincaré [1982], p.398) 

 

This method of proof is represented schematically by: - 

 

 

 
   

   
 



1

1

P

P n P n

n P n

 

 

The first line in this argument is known as the particular step, and the second line as the 

induction step.  Both these steps encode finite information. The conclusion is one about a 

potentially infinite collection.15   Mathematical  induction  has  been  likened  to  climbing up  a 

                                                           
14 We learn to associate counting up at some very early age with space – lining up our building blocks in a 

row, or constructing them into a tower.  But it is arguable that the structure created by counting is not a 

space at all, at least, not in the sense in which visible space is space.   

15 Example of a complete induction: 3Prove that 5  is divisible by 6 for all .n n n  

Proof: Let us use the symbol | to mean “divides into”.  For example 6 | 36 is read “6 divides into 36” or “36 

is divisible by 6”.  (This is standard notation in number theory.)  For the particular result, when n = 1 

    3 5 1 6 6 6 6n n  

so the result is true for n = 1.  For the induction step assume that the result is true for n = k.  That is 

 36 5k k .  We have to show        
3

6 1 5 1k k .  Now 

                         
3 3 2 3 2 3 21 5 1 3 3 1 5 5 5 3 3 6 5 3 6k k k k k k k k k k k k k k  

If k is an odd number then 2k k  is even (as the sum of two odd numbers), then  2 6k k  is even and 

  26 3 6k k .  If k is an even number then  2 6k k  is even, and   26 3 6k k .  In either case 

  26 3 6k k .  By the induction hypothesis  36 5k k  so        3 26 5 3 6k k k k , since 6 divides both 
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ladder. The steps of the ladder correspond to numbers.  The climb up the ladder would not be 

possible if the infinite chain of natural numbers was not already generated in our minds by 

the idea of repeated iteration of counting up one.  This creates the potential infinity of all the 

natural numbers, and the argument by complete induction attaches to this chain a property of 

numbers that is inductively carried up the ladder of all the natural numbers. 

This paper will illustrate how formal analytic logic is the science of inference derived 

from analogy with the relation of part to whole in space.  Formal analytic logic is also 

sometimes called syllogistic reasoning.  There is no prima facie reason to suppose that the 

“force” that constrains inference in the case of complete induction is represented by any 

formal analytic logic.   

6.1  Poincaré’s thesis 
In his essay Mathematics and Logic, Poincaré states that the principle of 

complete induction “appeared to me at once necessary to the mathematician 

and irreducible to logic.”  (Poincaré [1996] p. 148)16   This claim shall be called in 

this paper Poincaré’s thesis.   

 

I shall defend this Poincaré’s thesis.  About the attempt to reduce all of mathematics to a 

species of analytic reasoning Poincaré wrote: - 

 

... syllogistic reasoning remains incapable of adding anything to the data given 

in it; these data reduce themselves to a few given axioms, and we should find 

nothing else in the conclusions. 

No theorem could be new if no new axioms intervened in its 

demonstration; reasoning could give us only the immediately evident verities 

borrowed from direct intuition; it would be only an intermediary parasite, and 

therefore should we not have good reason to ask whether the whole syllogistic 

apparatus did not serve to disguise our borrowing? ... 

If we refuse to admit these consequences, it must be conceded that 

mathematical reasoning has of itself a sort of creative virtue and consequently 

differs from the syllogism. 

The difference must even be profound.  We shall not, for example, find 

the key to the mystery in the frequent use of that rule according to which one 

and the same uniform operation applied to two equal numbers will give 

identical results. 

                                                                                                                                                                      
halves separate.  Thus the result is true for 1k  and the induction step holds.  Hence, by mathematical 

induction 3 5  is divisible by 6 for all n n n  

16 The original publication was 1914. 
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All these modes of reasoning, whether or not they be reducible to the 

syllogism properly so called, retain the analytic character, and just because of 

that are powerless.” (Quoted in Detlefsen [1990], p.291 of Jacquette [2002])17 

 

 

7 Poincaré’s petitio pincipii 
 

Both Weyl and Poincaré believe that the proponents of set theory argue in a circle in claiming 

to define number from within set theory.  Weyl calls it a circulus vitiosus and Poincaré a petitio 

pincipii.18  Weyl’s argument is based on the principle that number is the only possible 

foundation for arithmetic, and one argues in a circle if one attempts to define number, 

because it has already been assumed.  In addition to offering this argument, Poincaré also 

claims that we need complete induction to justify the definitions of set theory, so one argues 

in a circle to then use set theory to define complete induction. 

For example, one of Poincaré’s counter-arguments to the thesis that induction is true 

by definition is that a definition is only valid if it is not self-contradictory.  We usually show 

this by supplying what he calls an “example”, that is, a model.   

 

But such a direct demonstration by example is not always possible.  Then, in 

order to establish that the postulates do not involve contradiction, we must 

picture all the propositions that can be deduced from these postulates 

considered as premises, and show that among these propositions there are no 

two of which one is the contradiction of the other.  If the number of these 

propositions is finite, a direct verification is possible; but this is a case that is 

not frequent, and moreover, of little interest. 

If the number of propositions is infinite, we can no longer make this 

direct verification.  We must then have recourse to processes of demonstration, 

in which we shall generally be forced to invoke that very principle of complete 

induction that we are attempting to verify.” (Poincaré [1996] p.153) 

 

It is specifically with regard to number that he accuses the “logiticians”19 of making a petitio 

principii  –  albeit “most skilfully concealed”.   He  is  sarcastic  about  Peano’s  symbolic  logic. 

“This invention of Peano was first called pasigraphy; that is to say, the art of writing a treatise 

on mathematics without using a single word of ordinary language.”     (Poincaré [1996] p.156) 

                                                           
17 The original is in Poincaré, The Value of Science (1905) in The Foundations of Science, ed., and trans. G. 

Halsted, The Science Press, 1946 
18 The term petito principii derives from Aristotle.  Both terms mean error by arguing in a circle – 

assuming what one has to prove. 
19 Although Poincaré is habitually sarcastic, this is not a pejorative term but a contemporary nomenclature 

for the proponents of the new logic: Hilbert, Russell and Peano among others. 
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Referring to Peano’s definition of       1 _ , OneT ko u h t u  he comments, “I do not 

understand Peanian well enough to venture to risk a criticism, but I am very much afraid that 

this definition contains a petitio pincipii, seeing that I notice the figure 1 in the first half and 

the word One in the second...” (Poincaré [1996] p.158)  “What is zero?  It is the number of 

elements in the class nil.  And what is the class nil?  It is the class which contains none.” 

(Poincaré [1996] p.158)  He calls such definitions “an abuse of the wealth of language”.  He 

sarcastically allows that Couturat’s definition of 1 is more “satisfactory” because it uses the 

word two!  “But I am afraid that if we asked M. Couturat what two is, he would be obliged to 

use the word one.” (Poincaré [1996] p.159) 

The founders of mathematical logic, which include Frege, Russell and Hilbert, 

probably did believe that they were breaking out of the fundamental category of natural 

number and reducing it to something analytic.  [Defined Chap.2, Sec.2.1]  Poincaré’s critique 

arguably does successfully call them to account and challenge their assumptions.  Strangely, 

as a critique of the modern formalism represented by the quotation from Curry above [Section 

1 above] Poincaré’s objections are quite ineffectual!   

The reason for this is that whereas Frege, Russell and Hilbert were attempting to 

justify mathematics in the traditional sense of providing an epistemology for it, modern 

formalism attempts no such thing.  It is the very essence of this formalism to deny all 

conceptual meaning to mathematical symbols and to regard whatever meaning they have as 

entirely reducible to the syntactic operations we perform with them.  Their contention also is 

that every such operation can be reduced to a mechanical procedure such as could be effected 

by a computer.  If formalists justify anything then it is by reference to more formal 

procedures – so one might say that circularity is the very essence of their theory.  This is a 

feature that I shall also refer to as the chicken and egg problem. 

7.1  The chicken and egg problem 
This is illustrated as follows: - 

1. Set theory is a first order theory. 

2. Any model of a first-order theory is a set.   

Similarly: - 

1. There is a Boolean valued model of set theory. 

2. Under the Stone representation theorem every Boolean algebra 

is isomorphic to a field of sets. 

Any circularity of theories is defined to be a chicken and egg problem. 

 

Modern formalism seems to have us running around in circles looking for a fundamental 

category.  One wants to cry out: where do we start?  What really is the origin of our 

ideas?     For formalists all mathematical activity just concerns manipulations of forms – 

establishing correspondences between classes of formal systems.  We cannot break out 

of a formal system, nor should we wish to.  That is the theory. 
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8 Materialism, empiricism and the ethical significance of this question 
 

As many have strong commitment to the ideologies of materialism and empiricism, it is 

appropriate to reflect briefly on the question: does Poincaré’s thesis constitute a refutation of 

either of these?   Being by instinct neither a materialist nor empiricist, I was surprised by my 

own conclusion – that the answer to this question was no; in fact, I even found myself moving 

more towards empiricism than I had ever thought possible.  In rejecting strong AI and 

formalism one not is forced to reject either of these philosophies.  For example, does any one 

seriously suggest that organic chemistry is a first-order theory?  If at some large-scale level 

brain circuitry bears some resemblance to Boolean switches that by no means obligates one to 

adopt the position of strong AI.  My impression concerning the development of “advanced 

physics” is that more and more physicists are recognising an element in matter that might 

even be described as spiritual in aspect.  I cannot say what the prospects for monism are, but 

suggest that, in a 1,000 years time, or 10,000 years time, our notion of matter may have 

advanced so far as for us to be able to say, with some confidence, mind is matter; but in doing 

so, I believe that our conception of matter will acquire attributes that hitherto we thought of 

as spiritual.  I have no wish to make a prediction.  I wish merely to state my opinion that 

materialism does not stand or fall with strong AI. 

But it is no mere digression if at this juncture I stress the ethical significance of the 

question before us.   The belief in strong AI really has entered our popular consciousness, and 

it is no exaggeration to say that we are collectively engaged at this time, culturally speaking, in 

a radical transformation of our concept of what it is to be human, and, without wishing to 

elaborate, there are many manifestations of this change that some, including myself, find 

disturbing.  The thesis of strong AI should be tested to destruction.  The whole tenor of the 

debate up to this time has been so many accumulations of victories for AI.  Does anyone report 

on the failures?  Are we reminded in the Daily Press that Day of Turing’s Prediction [Chap.13 

Sec. 1] has long come and gone?  Are we updated regularly on the failure of the Japanese Fifth 

Generation project?20  Let us hope that our culture is not about to enter upon a thousand year 

cycle wedded to Illusion.  The Ancient Egyptians built pyramids whose purpose was to make 

their Pharaohs immortal.  No one today believes in their science, but their culture endured in 

spiritual stagnation attended by human oppression for three thousand years.  The time has 

come to test to destruction the thesis that man is a digital computer.    

                                                           
20 The project initiated by the Japanese government in 1982 to create a supercomputer as a basis for 

artificial intelligence.  It may be claimed that that the project has failed. 
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Preliminaries 

The annotation convention (1.1) should be noted.  In the Preliminaries section I discuss (1.2) 

The Church-Turing thesis and (1.3) Basic conceptions underlying set theory – here the 

distinctions between collections and sets, and between sets and classes are theoretically 

significant. 

 

Prerequisites 

This is an attempt merely to identify or list concepts or results from mathematics in general 

that underpin the discussion in this text.  This section can be omitted in its entirety.  Some 

cross-references in the text refer to these statements.  The list is not exhaustive. 

 

1 Preliminaries 

1.1  Annotation (+) 
  

Any result that I believe originates with this paper is marked by (+). 

1.2  The Church-Turing thesis 
 

There are several distinct mathematical descriptions of effective computation: - 

 

1. Turing’s analysis based on Turing machines. 

2. The Gödel-Herbrand analysis based on recursive functions. 

3. An analysis in terms of Abacus machines. 

4. Church’s analysis based on his lambda calculus. 

5. Markov algorithms. 

6. Post systems. 

 

Here are some versions of the Church-Turing thesis that may be found in the literature: - 

 

1. “Church’s thesis: all computable functions are Turing computable.” 

(Boolos and Jeffrey [1980] p. 54.) 
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2. “In around 1936, several mathematicians (Alonzo Church, Stephen 

Kleene, Emil Post, and Alan Turing) independently proposed precise 

definitions of the notion of effective procedure.  Even though their 

definitions were very different from each other conceptually, it was 

proved that these definitions are all equivalent, in the sense that every 

function that can be computed under one definition can be computed 

using the others as well.” (Wolf [2005] p.96) 

3. CTT: “... no human computer, or machine that mimics a human 

computer, can out-compute a universal Turing machine” (p.10 of 

Abramson in Olsweski et al. [2006] who is quoting from Jack Copeland, 

2002a, p.67) 

 

Of these the last, CTT, seems to be taken as the basis of discussion in the anthology of articles 

entitled Church’s Thesis After 70 Years, (Olszewski et al. [2006]).  Nonetheless, in this paper 

the first two statements shall be taken to represent the Church-Turing thesis. 

 

Definition, The Church-Turing Thesis 

The Church-Turing thesis is the claim: - 

1. The six analyses of what is effectively computable given above are all 

formally equivalent.  Call this equivalence class the class of all Turing 

computable functions. 

2. All effectively computable functions belong to the class of all Turing 

computable functions and conversely. 

 

This definition equates a mathematically precise notion of Turing computable function to the 

intuitive notion of effectively computable function.  (This point has been frequently expressed 

in the literature.)  This gives the thesis a very peculiar status.  Part (1) is a mathematical 

theorem that has been formally proven, and is thereby not contentious.  Part (2) is said to be 

an empirical thesis and to be supported by “evidence” of an observational nature rather than 

mathematical. 

 

The equivalence of these definitions, as well as our substantial experience with 

computer languages and programs, provide strong empirical evidence that these 

definitions do in fact correctly represent the intuitive notion of an effective 

procedure, or mechanical computation.  There is no way to prove this, but it is a 

standard view as a sort of informal axiom, called Church’s thesis. (Wolf [2005] 

p.96) 

 

It is a consequence of this empirical thesis that it is expected that should anyone come up 

with a new analysis of what an effectively computable function is, then it will be proven to 

belong  to  the  class  of  all  Turing  computable  functions.   In  the  Church-Turing  thesis  an  
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extension (the class of all Turing computable functions) is equated with an intension (all 

effectively computable functions).  [See 1.3 below]  Notwithstanding the empirical character of 

part 2 of the definition above, in this paper I shall take it as a definition of what effectively 

computable means.  To demonstrate the pertinence of this, consider the following two 

quotations from the seminal paper Computing Machinery and Intelligence by Turing (Turing 

[1950]): - 

 

1.  ... we only permit digital computers to take part in our game. [p.7] 

2. The idea behind digital computers may be explained by saying that 

these machines are intended to carry out any operations which could be 

done by a human computer.  The human computer is supposed to be 

following fixed rules; he has no authority to deviate from them in any 

detail.  We may suppose that these rules are supplied in a book, which 

is altered whenever he is put on to a new job.  He has also an unlimited 

supply of paper on which he does his calculations.  He may also do his 

multiplications and additions on a “desk machine”, but this is not 

important. [p.8] 

 

The underlining is my own.  This is the clearest description of what is meant by “effective 

computation” and following fixed rules without deviation lies at the core of this.  But even this 

is ambiguous, and the implicit notion of what we shall take for a rule serves to convert the 

discussion into a species of definition.   

Turing also places emphasis on digital computers.  If we are restricting our attention 

to digital computers we have certainly very good evidence of the mathematical variety for 

accepting the Church-Turing thesis.  This concerns the structure of a digital machine that is 

made solely of binary switches.  The binary switches restrict the digital computer theoretically 

to a very specific domain, whose topology can be precisely delimitated, at least in the sense of 

being given an upper bound [Chap. 7, Sec. 3] .  Hence, here I adopt the Church-Turing thesis as 

a definition of what is effectively computable, and as a theorem about digital computers and 

reject the claim that it is an empirical thesis.   

 

Church –Turing Theorem 

The six analyses (1) Turing’s analysis based on Turing machines, (2) The Gödel-

Herbrand analysis based on recursive functions, (3) Abacus machines, (4)  

Lambda calculus, (5) Markov algorithms, (6) Post systems are all formally 

equivalent.  Call this equivalence class the class of all Turing computable 

functions. 

Definition, Church-Turing thesis, V2 

The Church-Turing thesis V2 is the statement that any effectively computable 

function is defined to be a Turing computable function. 
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The consequence of this is that the thesis is neutral as to the validity of strong AI.  By defining 

effectively computable in terms of the equivalence class of Turing computable functions, it 

makes no direct claim as to whether all mathematical proofs are Turing computable: simply 

accepting this version Church-Turing thesis does not force one to accept strong AI.  Nor does 

it provide any empirical evidence for strong AI.  I do not adopt Copeland’s version of the 

Church-Turing thesis, which is probably a disguised statement of the thesis of strong AI. 

1.3  About basic set theory 
 

1.3.1  Collections and sets 

Formal logic is based on extensions not intensions.  The term intension, which is a synonym of 

the term concept, denotes a mentally given something presented to consciousness.  Another 

synonym of intension is meaning.  A collection is a general, primitive notion for any gathering 

together of “things” into a single “whole” [“totality”, “totum”].  It is ambiguous as to whether 

this act of collecting together is a mental act or is just given.  A fusion is a collection of 

physical parts and is the sum total of its parts.  A multiplicity is a collection that comprises a 

whole that is distinct from its members.  Multiplicities may be definite or indefinite.  In an 

indefinite (or indeterminate) multiplicity the members cannot be listed or determinately given 

by a rule; in a definite multiplicity, the members of the collection may be listed or determined 

by a rule.  Multiplicities may be extensional or intensional: a multiplicity is extensional if it is 

determined solely by its members, so that two multiplicities with the same members must be 

identical; a multiplicity is intensional if it is determined by the concept that gives rise to the 

rule of membership, so that two multiplicities with the same members may yet be distinct if 

they are defined by different rules. 

1.3.2  Definition, set 

A set is a multiplicity that is definite and extensional. 

Example 

The null set is the definite, extensional multiplicity that has no members.   

The null set is distinguished from a fusion, because there cannot be an empty fusion.  The 

extension of the concept “unicorns in my garden” is the null set; the extension of the concept, 

“set that has no members” is the null set.  These are different as intensions but identical as 

extensions.  In set theory the two intensions are not distinguished. In set theory the primitive 

notions are set and membership.  A set is a collection that has members.  Members of sets are 

either sets or individuals.  In pure set theory there are no individuals.  Set theory rules out 

definition by abstraction: - 

 Definition by abstraction 

Let   denote an intension (concept, meaning).  Then   :x x  defines by 

abstraction a collection that satisfies a property that the intension   denotes.  

We abstract from the intension (concept) to the set of entities that satisfies this 

property. 

The axiom of extensionality explicitly disallows definition by abstraction from intensions.  Set 

theory permits definition by formula in the form of the Axiom of separation.   

 Chap. 2 ] PRELIMINARIES [ Sec. 1 



© Peter Fekete ] 20 [ October, 2011 

 

1.3.3  Assumed knowledge of set theory 

It is assumed that the reader is familiar with the basic operations of set theory: unions, 

intersections, complements, power set. Also equivalence, isomorphism, homomorphism.  

1.3.4  Zermelo-Fraenkel set theory at a glance 

Zermelo-Fraenkel set theory requires eight axioms: - 

1. Axiom of extensionality 

 Sets are identical if they have the same members 

2. Axiom of regularity – also called the axiom of foundation 

 A set cannot be a member of itself 

3. Axiom schema of separation 

 A property is collectivising if its members are already members of a set 

4. Pairing axiom 

 A pair of sets is another set 

5. Union axiom 

 The union of two sets is another set 

6. Power set axiom 

 Sets have subsets and the set of all subsets is another set 

7. The axiom schema of replacement, sometimes also called the sum axiom 

 The images of functions are also sets 

8. Axiom of infinity 

 There is at least one collection with an actual infinite number of members 

1.3.5  Proper classes, classes and sets 

Russell’s paradox [Proven in Chap. 16.4.5], demonstrates that there can be no such thing as a 

universal set containing all individuals [See below Sec. 2.1] .  It shows that the universal set is 

a self-contradictory concept.  However, it is customary in set theory to allow discussion of a 

universal collection.  This is in accordance with the doctrine of “limitation of size” – a set is 

something that is “not too big” in the sense of definitely constructed “from below” by certain 

operations or rules.  The problem with the universal collection is that it is too big to be a set.  

Hence, the term “proper class” is reserved to designate those collections that are too big to be 

sets.  The term “class” is used to designate any collection that is either a proper class or a set. 

1.3.6  Definition, proper class 

A proper class is a collection that has members that are sets but cannot be constructed by the 

rules or operations of set theory. 

 

2 Prerequisites 

2.1  Epistemology 
 
A posteriori: knowledge that is gained from particular experience. 

A priori: knowledge that cannot be derived from particular experience. 

Subject / Predicate: In a statement the subject is what the statement is about and the 

predicate is what is said of the subject. 
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Analytic: the meaning of the predicate is contained in the meaning of the subject. 

Synthetic: the meaning of the predicate adds new meaning to that of the subject. 

Analytic a priori: true by definition or convention; the meaning of the predicate is contained in 

the meaning of the subject. 

Synthetic a posteriori: substantive knowledge of the world derived from particular experience. 

Synthetic a priori: substantive knowledge of the world, neither true by definition nor derived 

from particular experience. 

Individual: whatever can be the referent of the logical subject of a statement. 

Contingent: a statement whose truth depends on some particular state of affairs in the world. 

Necessary: a statement that is true in all possible worlds. 

2.2  Logic 
 

It is assumed that the reader has some knowledge of formal logic – the propositional and 

predicate calculus.  In some respects this text does not assume much more knowledge than 

the following: - 

 

Truth functions, truth tables, tautology, rules of inference, rule of assumptions, 

conditional proof, deduction theorem, quantifiers, free and bound variables, 

generalisation, logical truth, recursive definition of a well formed formula 

(abbreivated by wff.), prenex normal form. 

2.2  Turing machines 
 

A Turing machine is a device for performing a computation.  It may be visualised as a car 

moving along a track or tape that is divided into segments and is potentially infinite in length.  

The segments contain symbols.  A result shows that only two different symbols are required.  

These are designated 0 and 1.  The car scans one segment of the track at a time.  The car has a 

program that instructs it what to do when it scans a symbol on the track.  The instruction 

depends on (a) the state the car is in when it scans the symbol and (b) on the symbol.  These 

two pieces of information are sufficient to instruct the car to perform an action and to tell it 

which state to go to next.  This information is encoded in a quadruple, so the mechanical 

description of the machine is an implementation only of an abstract structure. 

 

 2.2.1  Definition, quadruple 

A quadruple is an ordered 4-tuple of the form     
i i i iq q  where ,i iq q  are states, 

   0,1i  and  
i  is an instruction,     0,1, ,i L R . 

2.2.2  Proposition  (Boolos and Jeffrey [1980] p. 30) 

Any function from positive integers to positive integers which is Turing computable is 

Turing computable in monadic notation by a Turing machine which uses only the 

symbols 0 and 1. 
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2.2.3  Definition, action 

An action is one of the following:- 

0 :1  Change the scanned symbol on the tape to 1.  Similarly, for 1 : 0 . 

0 : L  On scanning the symbol 0 move left.  Likewise, 1 : L . 

0 : R  On scanning the symbol 0 move right.  Likewise, 1 : R . 

Example 

 2 1 5L  is read “When in state 2 scanning 1 move left and enter state 5”. 

2.2.4  Definition, program, Turing machine 

A program is a set of quadruples.  A program is also called a Turing machine. 

 

It is useful to have a diagrammatic representation of a Turing machine.  The flow graph 

introduced by Boolos and Jeffreyn [1980] is very helpful: - 

 

present
state

next
state

scanned
symbol

: act

 

 

 Example 

 The quadruple  2 1 5L  has flow graph 

2
1 : L

5

 

 

2.2.5  Some nomenclature used in this text 

In this text the tape is called the Turing tape.  The tape has an infinite assignment of 

0s and 1s.  A finite configuration of the tape shall be an assignment of 0s and 1s to 

the tape that can be encoded in a finite series of instructions or rules.  For example, 

the tape assignment: - 

1 0 1 1 0 1 1 1 

together with the rule that the tape has infinite 0s to the left and right of this block.  

The standard configuration is any bloc of n 1s on a tape that otherwise contains 0s.  It 

is evident that it is a finite configuration. 

2.3  Recursive functions 
 
It is assumed that the reader is familiar with the concepts of primitive recursion and definition 

by minimization: “   1the smallest  for which , ... , , 0ny f x x y ”.  The following example of a 

generating sequence for the definition of addition by primitive recursion is given as an aide 

memoir: - 
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Example 

Addition is PR.  That is: - 

         0 1 1m m m n m n  

with generating sequence: - 

1.   1 identityf x x  

2.  2 1 successorf x  

3.   3 , , projectionf x y z z  

4.  4 2 3 compositionf f f  

5.  5 1 4 defined  by recursion with ,f h f g f ; 5f  is addition. 

To compute  2 3 5  by this sequence: - 

            
            
           

            

      

   







5 4 2 3 2 4

2 3 2 4

2 3 2

2,3 2 3 2,2,2 2 2,2,2 2 2 2 2 2 2 2,2,2 1

2,2,2 1 2 1 2 1 2,2,2

2,2,2 2 2 5

f f f f f s s f

s f f s f s s s s f

s s f f s s f s s s

 

Recursive functions are functions that are primitive recursive with the addition of the 

operation of minimilization. 

2.4  Arithmetic Hierarchy 
 
2.4.1  Measure of complexity 

Let a formula be in prenex normal form,   (i.e all quantifiers are located at its beginning.)  

The number of alternations of quantifiers (changes between  , ) is a measure of the 

formula’s complexity. 

 0 0,     is quantifier-free. 

1    begins with an existential quantifier and has 0 alternations. 

1    begins with a universal quantifier and has 0 alternations. 

 1n    begins with an existential quantifier and has n alternations. 

 1n    begins with a universal quantifier and has n alternations. 

A finite string of quantifiers of the same type can be rewritten as a single quantifier. 

Examples 

1   x Px  

1   x Px  

2         x y Px Qy   

                  , , , ,x r s t P x r s t Qx S r s  

2            u v x y  where   is a quantifier-free formula. 
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These categories are technically disjoint; that is, for example: -  

   

    
1n n

n n

 

However, any formula of lower complexity can be translated into a formula of higher 

complexity by the addition of dummy variables; hence a hierarchy of embeddings can be 

defined.   

 Examples 

             
 
       

1 2

x y xy yx z x y xy yx
 

Likewise, 

             
 
       

1 2

x y xy yx x y z xy yx
 

2.4,2  Arithmetic hierarchy 

We have the arithmetic hierarchy 



 





  

   

  

    

    

0 0 0
1 2

0 0 0 0
1 2 1

0 0 0
1 2

... ...

... ...

... ...

 

where n  denotes the ambiguous class: 

     

     
1 either  or 

both  and 
n n n n n

n n n n n

 

2.4.3  Definable set 

 0 0,  Sets that are quantifier-free definable.  Also said to be 0 -definable and 0 -definable. 

 ,n n  Sets that are definable by formulas of  ,n n  complexity respectively. 

     

     
1 either  or  definable

both  and  definable
n n n n n

n n n n n

 

 

2.5  Order relations 
 

2.5.1  Definition, ordered set and order relation 

An ordered set is any set on which an order relation can be defined.  An order relation is a 

relation   on a set X that satisfies the following four axioms 

O1 Reflexive: For all  ,x X x x  

O2 Transitive: For all    , , ,  if  and  then x y z X x y y z x z  

O3 Antisymmetric: For all    , ,  if  and  then x y X x y y x x y  

O4 For all   , ,  either  or x y X x y y x .  In this case x, y are said to be comparable. 
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2.5.2  Definition, partial order, poset 

If a structure  ,X  satisfies O1, O2 and O3 then the relation   is called a partial order, and 

the set X is called a partially ordered set, or poset. 

2.5.3  Definition, total order, chain 

If in addition to being a partial ordering  ,X  satisfies O4, then the relation   is called a 

total order or linear ordering, and the set X is called a totally ordered set or chain.  

2.5.4  Definition, well-ordered 

Let  ,X  be a totally ordered set.  Then X is said to be well ordered if and only if every non-

empty subset Y of X contains a minimal element; that is, there exists an element y Y  such 

that for all x X , y x .  This element y is said to be the least element of Y. 

Example, the set of natural numbers 

The set   0, 1, 2, 3, ... is an ordered set, meaning, every element, after the initial 

element 0, has an immediate successor.  The set   0, 1, 2, 3, ...  is a totally ordered 

set, where   is the usual relation of ‘greater than or equal’ numbers.  The set   with 

the standard ordering   is well-ordered.  Under this ordering every non-zero number 

n  has a unique predecessor.   

2.6  Maximal elements 
 

2.6.1  Definition, maximal, minimal element 

Let X  be a partially ordered set.  Then an element x X  is said to be maximal if for all y X , 

  y x y x .  This states that there is no element in X other than x itself that is greater than 

or equal to x. A minimal element of a subset X of a partly ordered set P is an element a such 

that   for no a x x X .  It is a result that a maximal element is unique if  ,X  is a total 

order. 

2.6 2  Definition, bounded above 

Let S be a set of real numbers.  If there is a real number K such that, for every member x S , 

x K  then S is said to be bounded above, and K is called an upper bound of S.  Likewise, if 

there exists a k such that, for every member x S , x k , then k is called a lower bound of S. 

2.6.3  Definition, Least upper bound, greatest lower bound 

Any number that is greater than every element of a set S may serve as an upper bound for the 

set; but there may be just one number among these upper bounds that is the least upper 

bound.  The least upper bound for a set S is a number K that is an upper bound for S such 

that, if   is any small positive number, then K  is greater than some member of the set S.  

Likewise, the greatest lower bound of S may be defined.  The least upper bound is also called 

the supremum, denoted sup, and the greatest lower bound is also called the infimum, denoted 

inf. 
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2.7  Cardinal numbers 
 

2.7.1  Hume’s principle 

Hume’s principle is as follows: the number of F’s is equal to the number of G’s iff there is a 

one-one correspondence between the F’s and the G’s.  For example, at a dinner party, the 

number of knives will equal the number of forks if, and only if, for every knife there is a fork.  

We do not in fact need to know the number of knives (say “six”) in order to establish this 

correspondence.   

2.7.2  The Fregean concept of number 

Frege used Hume’s principle as the basis for his definition of number.  Thus, for example, the 

number 2 becomes the name of the class of all sets of objects in one-one correspondence with 

any pair.  The number 0 is the name of the empty set.  (There is only one empty set.)  In order 

to complete the definition of number Frege also needed to establish that the cardinal numbers 

so defined follow in a sequence: 0, 1, 2, 3, ... .  (So the Fregean definition of cardinal number 

given here is not his complete theory.) 

2.7.3  Equinumerous sets 

X Y  iff there is a one-one mapping from X onto Y.  X and Y are said to be equinumerous or 

equipotent.  It is a result that X Y  is an equivalence relation. 

2.7.4  Cardinal number 

To each set X we assign a cardinal number, denoted card X . 

card card      X Y X Yiff     card 0     X Xiff  

The cardinal number of a finite set is the number of its elements.  

 card card       where A B A X X Biff   

Cardinal numbers are equivalence classes under the relation of equinumerosity.   

 Notation 

 The notation X  is also used for card X ; that is,  cardX X . 

2.7.5  Schröder-Bernstein theorem 

   card card    and   card cardA B B A A B  

2.7.6  Cantor’s theorem  

The power set of any set X  (finite or infinite) has cardinality strictly larger than that of X. 

  card cardX P X  

Equivalently: Let X be any set and  P X  its power set.  Then there does not exist a 

bijection   such that        2 :XY x x Y  

2.7.7  Theorem 

Let card X x .  Then        card card card 2 2x XP X . 
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2.7.8  Cantor’s anti-diagonalisation1 theorem for the real numbers 

The set of real numbers,  , is not equipotent to the set of natural numbers,  . 

2.7.9  The continuum 

The real number line is also called the continuum.  It is a result that  0,1   

2.7.10  Definition, power continuum 

A set is said to be of power continuum if it is equipotent to  .   

Notation 

c denotes the cardinality (power) of the continuum. 

2.7.11  Definition, aleph (temporary) 

0card .  That is, 0  denotes the number of elements in a countably infinite set. 

2.7.11  Results 

1.   0 c c  

2. The smallest transfinite cardinal number is 0 . 

3.  02c  

2.8  Ordinal numbers 
 

2.8.1  Natural numbers, ordinals and cardinals 

Ordinal numbers are expressed in natural language using the terms, “first”, “second”, “third” 

and so forth.  These contrast with natural counting numbers, “one”, “two”, “three” and so on.  

Ordinal numbers relate to position within an order, and natural numbers relate to the size of a 

collection.  The answer to the question, “What was the runner’s position in the race?” is an 

ordinal number; the answer to the question, “How many people entered the race?” is a natural 

number.   

2.8.2  Definition, order-isomorphism, similar 

Let  ,X  and  ,Y  be well-ordered sets.  An order-isomorphism is a bijection :f X Y  

such that       1 2 1 2 1 2,  and x x X x x f x f x .  Then X and Y are said to be order-

isomorphic, or similar, denoted:      , ,X Y  or simply, X Y . 

2.8.3  Theorem 

Order-isomorphism,  , is an equivalence relation. 

2.8.4  Definition, isomorphism type, ordinal (temporary) 

An isomorphism type of ordered sets is called an order type, (after Cantor 1895).  The order 

types of well-ordered sets are also called ordinals.  Under this provisional definition, each 

well-ordered set  ,X  is a member an ordinal number, denoted  ord ,X .  The ordinal 

number of any two order-isomorphic sets is the same.  That is: - 

             ord , ord ,   iff  , ,X Y X Y  

                                                           
1 Sometimes “diagonalisation” is used for this argument.  But we use “anti-diagonalisation” to distinguish 

it from the preceding argument.  Anti-diagonalisation shows that sets can not be paired off, whereas 

diagonalisation shows that they can. 
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2.8.5  Theorem, Burali-Forti 

The class of all ordinals is a proper class. 

2.8.6  Theorem 

Any two finite sets that have the same number of elements are order-isomorphic. 

Notation 

1.     ord , 0   iff   X X  

2. If  ,X  is well-ordered such that X contains n  elements, then 

   ord ,X n  

3. We denote the order number of the set   by  .  That is 

       ord , 0,1,2,....  

Whereas a given well-ordered set may have only one cardinal number, under different 

orderings the set may have distinct ordinal numbers. 

2.9  Minimal topology 
 

2.9.1  Assumed knowledge about vector spaces 

For example; vectors, vector spaces, orthogonality, scalar product, independent vectors, vector 

basis, span. 

2.9.2  Formal definition, topological space 

Let X be a non-empty set.  A class T of subsets of X is called a topology on X if it satisfies the 

following two conditions: - 

(1) the union of every class of sets in T is a set in T 

(2) the intersection of every finite class of sets in T is a set in T. 

2.9.3   Definition, neighbourhood 

The neighbourhood of a point or open set in a topological space is an open set containing the 

point or set. 

2.9.4  Definition, open cover 

Let X be a topological space and  iA  a set of open subsets of X.  Then  iA  is said to be an 

open cover of X if     for some ix X x A i ; that is  i
i

A X .  A subcover is a subset of an 

open cover that is also an open cover. 

2.9.5  Definition, compact space 

A compact space is a topological space in which every open cover has a finite subcover.  A 

compact subcover is a subspace of a topological space that is also compact and is also a 

topological space. 

2.9.6  Definition, locally compact 

A topological space X is locally compact iff every point in X has a compact neighbourhood. 

 Chap. 2 ] PREREQUISITES [ Sec. 2 



© Peter Fekete ] 29 [ October, 2011 

 

 

2.9.7  Definition, analytic basis 

Let  ,X T  be a topological space.  A topological basis for T is a subcollection B T  such that 

every set in T is a union of sets from B. 

2.9.8  Definition, metric 

Let X be a non-empty set.  A metric on X is a real function   :d X X  of ordered pairs of 

elements of X such that 

   
   
     
       

 

  

   
    

1 , 0 for all ,

2 , 0

3 , , symmetry

4 , , , triangle inequality

d x y x y X

d x y x y

d x y d y x

d x y d x z d z y

 

These conditions above are also known as the Hausdorff postulates. 

2.9.10  Definition, metric space 

A metric space, denoted  ,X d , is a non-empty set X equipped with a metric d on X.  The 

elements of X are called points of the metric space  ,X d . 

2.10  The completeness axiom 
 

The following are equivalent statements of the Completeness Axiom 

2.10.1 Bolzano-Weierstrass theorem,  

Every infinite bounded subset has a limit point in the set.  In its original formulation this was 

expressed as: Every bounded sequence in Euclidean space n  has a convergent subsequence.   

2.10.2 Cauchy convergence criterion,  

Let S by a non-empty subset of  .  Every Cauchy sequence on S converges to a real point in S. 

[We do not need Cauchy sequence in this text, so leave it undefined here.] 

2.10.3 Dedekind completeness axiom  

Any non-empty subset of   which is bounded above has a least upper bound in the set. 

2.10.4 Cantor’s nested interval principle  

Given any nested sequence of closed intervals in  ,              1 1 2 2, , ... , ...n na b a b a b  there is 

at least one real number contained in all these intervals, 




   
1

,n n
n

a b  bound in the set. 

2.10.5 Heine-Borel theorem 

Let X be a closed, bounded set on the real line  .  Then every collection of open subsets of   

whose union contains X has a finite subclass whose union also contains X.   

2.11 Algebraic topology 
 

2.11.1  Edge equation 

Example: identification of the edges of the sheet of paper by matching the symbols and arrows 

results in a torus. 
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a a

b

b  

2.11.2  Topological invariant 

A property of a surface that is unaltered under continuous deformation. 

2.11.3  Definition, Euler characteristic 

Let   be a polyhedron.  Let: - 

     number of vertices of number of edges of number of faces of V E F  

Then, for any   the Euler characteristic is the number:    V E F . 

It is a result that the Euler characteristic is a topological invariant of a surface. 

2.11.4  Canonical two-dimensional surfaces 

Surface 

Algebraic 

edge equation of 

quadrilateral 

Other edge 

representations 

Euler 

characteristic 

Disk  1abcd   1a  1 

Sphere   1 1 1abb a   1 1aa  2 

Torus   1 1 1aba b   0 

Cylinder  1 1aba c   0 

Möbius band  1 1abac   1dde  -1 

Klein bottle  1 1abab   0 

Projective plane  1abab   1aa  1 

 

2.12  Peano Postulates 
 

The following axioms characterise arithmetic: - 

P1 0 is a natural number 

P2 If x is a natural number, there is another natural number denoted by x .  It is called 

the successor of x. 

P3 0 x  for any natural number x. 

P4 If    then x y x y  

P5 Principle of Induction. 

If Q is a property which may or may not hold of natural numbers, and if  

 (1) 0 has the property, and 

(2) whenever a natural number x has the property Q, then x  has the property Q, 

then all natural numbers have the property Q. 
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The last of these statements is second-order – it quantifies over properties.  There are 

continuum many properties, so the collection is not effectively computable.  Arguably an 

effectively computable collection is provided by first-order Peano Arithmetic, in which P5 is 

replaced by an Axiom Schema: - 

P5* For any wff  A x :                  0A x A x A x x A x . 

There are only a countably infinite number of such axioms, so the first-order Peano Arithmetic 

does not characterise Peano Arithmetic. 
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CHAPTER 4  
 

 
Formal Analytic Logic 

 

  

 

 

1 Poincaré’s thesis 
 

Analytic logic, which is also called syllogistic logic, is based upon analysis of the spatial 

relation of part to whole.  The subject of arithmetic is , the collection of all natural numbers.  

This domain is equipped with a principle of reasoning called complete induction.  I shall 

advance the thesis, originally proposed by Poincaré, that complete induction cannot be 

derived from analytic logic.  Poincaré calls complete induction “reasoning by recurrence” and 

states that it is the creative principle in all mathematical reasoning that enables us to 

synthetically reduce the infinite to the finite.  The following are quotations from his essay, On 

the nature of mathematical reasoning, where he states the thesis and advances important 

arguments in its favour: - 

 

(a)   ... mathematical reasoning has of itself a kind of creative virtue, and is 

therefore to be distinguished from the syllogism. 

(b)   A real proof, on the other hand, is fruitful, because the conclusion is in 

a sense more general than the premises. 

(c)   The essential characteristic of reasoning by recurrence is that it 

contains, condensed, so to speak, in a single formula, an infinite 

number of syllogisms. 

(d)   To prove even the smallest theorem he must use reasoning by 

recurrence, for that is the only instrument which enable us to pass from 

the finite to the infinite. 

(e)   Why then is this view imposed upon us with such an irresistible weight 

of evidence?  It is because it is only the affirmation of the power of the 

mind which knows it can conceive of the indefinite repetition of the 

same act, when the act is once possible.  The mind has a direct intuition 

of this power, and experiment can only be for it an opportunity of using 

it, and thereby of becoming conscious of it.” (Poincaré [1982] pp 394 - 

402] 

 

In order to evaluate this thesis we require a deep understanding of the nature of formal 

analytic logic. 
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2 Analytic logic and Boolean lattices 
 

Modern formal logic is a rigorous expression of the syllogistic logic of Aristotle.  Regarding 

the foundation of his logic, Aristotle wrote: - 

 

Whenever three terms are so related to one another that the last is contained in 

the middle as in a whole, and the middle is either contained in or excluded from 

the first as in or from a whole, the extremes must be connected by a perfect 

syllogism.  By a middle term I mean one that is itself contained in another and 

contains another in itself; this term also becomes middle by position.  By 

extremes I mean both that term which is itself contained in another and that in 

which another is contained. (Aristotle [1964 / c.400 BC] p. 8) 

 

My underling.  The extract illustrates how the idea of syllogistic logic arises from an analogy 

with containment in space, and is developed from the relation of part to whole.   

 

 

A

B

C

 

 

If A is contained in B and B in C then A must be contained in C. 

 

A

B

C

 

 

If A is contained in B and B is wholly separate from C, then the A cannot be contained in C. To 

say that A is contained in C is a contradiction.  Every tautology is founded on a relation of 

containment in space.  To illustrate this, consider the tautology,       p q p q .  This 

concerns two propositions, p and q, each of which can be negated to give p  and q .  Let 

there be a partition of space to which these four propositions,  , , ,p p q q  apply.    We cannot 
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have  p p , for that is as much as to say that a partition is not contained in itself, which 

violates geometric intuition.  Likewise,  q q  is impossible.  All other combinations of 

 , , ,p p q q  are contingently possible.  Hence, the space may be divided into four partitions: - 

              1 2 3 4p q p q p q p q  

As indicated, let us identify these partitions with sets        1 , 2 , 3 , 4 .  Here the numerals 1, 2, 

3, 4 signify nothing more than arbitrary distinct names for the undifferentiated content of 

each partition – whatever state of affairs it is in the world that makes the propositions true.  

The do not necessary stand for numbers.  Let us call these four partitions atoms of the space 

generated by contingent propositions p and q. 

 

p q 

p q      p q  

  p  q

{1}

{2}

{3}

{4}

 

 

The proposition p corresponds to the union of partitions    1 , 2 , which is  1,2  and p q  

corresponds to the partition  1,2,3 .  Hence, since partition  1  is contained in partition 

 1,2,3 , if p q  is true then p q  must be true; this gives     p q p q  and the tautology 

      p q p q  follows.  There are 16 combinations of p, q corresponding to 16 partitions 

of the space represented by   1,2,3,41 .   

2.1  Geometric definition of a lattice 
A poset [Chap. 2, Sec. 2.5.2] L is called a lattice if for every ,x y L  

    sup ,  and inf ,x y L x y L .  Let    sup ,x y x y L  and    inf ,x y x y L .  

The element x y  is called the “join” of x and y and the element x y  is called 

the “meet” of x and y. 

2.2  Largest and smallest elements 
The symbol 1 (bold typeface) denotes the largest element in the lattice and is 

the join of all the atoms.  Likewise, the symbol 0 denotes the smallest element 

of the lattice, which is the meet of all the atoms.1 

 

From this definition we can construct the model of the propositional logic of p and q, which is 

a Boolean lattice – that is, a complemented, distributive lattice. 

                                                           
1 Not all lattices have a 1 and 0.  Complete lattices do have them.  [9.4 above]  All finite Boolean lattices are 

complete. 
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{1} {2} {3} {4}

{3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

1 = {1,2,3,4}

{1,2} {1,3} {2,3} {2,4}
p q pqp qº

p q  p q p qp q

p q
p q  p q  p q

p qº

0  

2.3  Boolean lattice of two propositions 

This lattice shall be denoted, 42 , where   0,12  and 

                        
44 0,1 0, 0, 0, 0,p q p q p q p q2 2 2 2 2   

(Cartesian product)  Here   p p1  denotes the complement of p. 

 

The properties of 42  are significant because they are inherited by all finite Boolean lattices.   

2.4  Definition, Boolean lattice / algebra 

A Boolean lattice, also called a Boolean algebra, is any structure  , , , , ,B 0 1 , 

subject to the axioms: 

   1 , ,B B  is a distributive lattice2 

     2B p p0 0 1 1  

      3B p p p p0 1  

 

I shall be using the terms lattice and algebra interchangeably, but it is useful to appreciate 

their different nuances.  The term lattice emphasises the structural aspect – an abstract and 

rigid object that is visualised in the above diagram by the points and the lines joining them.  

The term algebra emphasises the relation to the language used to describe this structure.  So 

we need both terms.  This lattice / algebra is also related to the logic built over the lattice.  

Formal analytic logic is a structure built for the purpose of conducting inferences, whereas the 

lattice is a structure conceived as a collection of relations given a priori.  Analytic logic is the 

application of the analytic properties of a lattice to the purpose of inference.  It is customary 

to use the same symbols for the join    and meet    in the lattice as those used for the 

logical  operations  of  disjunction      and  conjunction    . This  is  an  abuse  of  notation 

                                                           
2 A lattice is distributive iff the identities           x y z x y x z  and           x y z x y x z  

hold in it. 

 Chap. 4 ] ANALYTIC LOGIC AND BOOLEAN LATTICES [ Sec. 2 



© Peter Fekete ] 68 [ 06 Oct. 2011 

 

nonetheless, because of the intimate relation between the logic and the lattice, it is natural 

and convenient.  The lattice complement  ¢  corresponds to negation    in logic.  The top 

and bottom elements, 1 and 0 are said to be “distinguished elements”; this just simply means 

that they are marked out in our language by distinct symbols; we do not use p p  for 1; it 

would be inconvenient.3  In the discussion that follows any general property of 42  is inherited 

by all finite Boolean algebras.  

 Concerning Boolean algebras, there is an important principle of duality: - 

 2.5  Principle of duality 
Every Boolean algebra has an isomorphic dual formed by interchanging 0 for 1 and   

for   at every lattice point.  

3  Boolean lattices as vector spaces 

3.1   Proposition, lattices are vector spaces 

  0,12  is a field (the simplest there is) and 42  is a vector space over 2 with 

dimension    
4 : 42 2 .   

 

Since 42  is a vector space, there must exist an alternative description of a finite Boolean 

lattice that makes this transparent.   

3.2   Boolean rings 
Every Boolean lattice is isomorphic to a Boolean ring, that is, an idempotent4 

ring with unity.  A Boolean ring is a structure   , , , ,B 0 1 5 in which it makes 

sense to talk of addition and multiplication of elements ,p q B .  The Boolean 

sum, p q , is called the symmetric difference of p and q.   

 3.3  Transformations of Boolean algebra and ring 
 Boolean lattice (algebra)   Boolean ring 

    
  

     

p q p q

p q p q p q
 

Boolean ring   Boolean lattice (algebra) 

                                                           
3 Being “distinguished” does not mean that they are called into existence by the act of distinguishing 

them; they exist in any lattice, but we distinguish them by naming them. 

4 An operation   on set X is said to be idempotent if x x x  for all x X . 

5 Formal axiomatisation of a Boolean ring: (B1) Associativity of addition:        x y z x y z ; (B2)  

Associativity of multiplication:        x y z x y z ; (B3)  Commutativity of addition:   x y y x ; (B4)  

Identity law for addition:  x x0 ; (B5)  Identity law for multiplication:  x x1 ; (B6)  Distributive laws: 

                  ,a x y z x y x z b y z x y x z x ; (B7)  Additive inverse law:  x x 0 ; (B8)  

Idempotency:  x x x  
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 
   
  

meet

join

1 complement

p q pq

p q p q pq

p p

 

 3.4  Result 
 Every finite vector space has a basis 

 

Since 42  is a vector space, there is a basis for it.  There are many ways of obtaining a basis of 

independent vectors in this space, but the set   , , ,p p q q  is not a basis.  This is because 

     1p p q q q .  This indicates that the set   , , ,p p q q , corresponding to the logical 

  , , ,p p q q  is not its most informative substructure.  Either of the following two related 

substructures may be chosen as a basis: - 

 

The atoms 

       
       
                 
       
              
       

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

p q p q p q p q  

The co-atoms 

       
       
                 
       
              
       

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

p q p q p q p q  

 

We see that 22  has a complete set of atoms. 

 3.5  Definition, atom (provisional) 
In this context, a set of atoms for a finite Boolean lattice is a finite set of linearly 

independent vectors that forms a complete basis for it.6 

 

It will be useful to have a distinct notation for these atoms and I shall use the symbols 

 1 2, , ...  to denote them.  Here                1 2 3 4, , , , , ,p q p q p q p q . 

 3.6  Result, finite atomic lattice 
Every finite Boolean lattice has a set of atoms, and for this reason finite Boolean 

lattices are said to be atomic.   

 

                                                           
6 An atom is formally defined below at 5.8 of this chapter. 
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Multiplication in the Boolean ring corresponds to a test for independence, and hence 

orthogonality7. For any two atoms we have         i j i j i j0 .  In lattice theory in 

general the base structure from which the whole lattice may be constructed is called a 

skeleton.8  In a Boolean algebra the set of atoms constitute its skeleton.  Using the basis of 

atoms we see that every element of a Boolean lattice may be written uniquely as a join of 

atoms.  We see that the set of atoms comprising the skeleton just is the partition of the space 

on which the lattice is defined. 

 

4 Finite representation theory 
 

A second series of correspondences has already been introduced by the partition   1,2,3,41  

of the logical space.  This is the correspondence between the algebraic operations  , , ¢  and 

the set-theoretic operations  , , ¢ .  We have: - 

      ¢ ¢  

The atoms are mapped   i i , where i is a numerical label of the content of a partition of 

the underlying space.  This means that every Boolean algebraic operation and corresponding 

logical operation also corresponds to an operation on the underlying set of all subsets of the 

partition of the space.  For example, 

                1,2,3 1,3,4 1,3 p q p q q  

The partition of the underlying space turns it into a discrete topological space, and the atoms 

also comprise a topological basis for it.  This can be visualised on our original diagram for 

that underlying space: - 

 

 

p q 

p q      p q  

  p  q

{1}

{2}

{3}

{4}

 

                                                           
7 Intuitively, this means the vectors are perpendicular to each other; formally, it means that their scalar 

product is 0. 
8 A skeleton is a representative set from which the lattice can be constructed.  Davey and Priestley [1990] 

p.165 write: “Given any lattice L we ... seek a representing set or ‘skeleton’ P from which to reconstruct L.  

We should like P to be a subset of L with the following properties: (i) P is ‘small’ and readily identifiable; 

(ii) L is uniquely determined by the ordered set P. Even more nebulously, we should also like: (iii) the 

process for obtaining L from P is simple to carry out.” Atoms in a Boolean lattice meet these criteria.  But, 

“if the lattice L is not required to be finite and Boolean, there may be too few atoms for the set of atoms to 

serve as a skeleton.” 
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This diagram is a heuristic only, and as we know by means of space filling curves that any 

compact (closed, bounded) space may be mapped onto         0,11  we see that the 

primitive structure that we are dealing with is a partition of the continuum, which is the 

extended real line, here represented most conveniently by    0,11 .  Thus, we may replace our 

heuristic diagram by: - 

 

0 1

1 2 3 4

{1} {2} {3} {4}  

 

Let us provisionally treat each partition as an atom of space that cannot be further 

subdivided.  In the above diagram I have shown each partition as being equal in length, but 

this measure of length is extrinsic to the structure, by which I mean to say that viewed from 

the “outside” the intervals in the partition may be any size.  For example, this is what an 

external viewer might see: - 

 

0 1

{1} {2} {3} {4}  

 

An observer from ”inside” the space intrinsically would not be able to tell the difference 

between the two spaces, because he cannot measure the difference.  In this model the interior 

content of each division is undifferentiated.  A proposition affirms the whole of the division, 

without regard to individual content.   

The lattice 42  is based on a partition of    0,11  that splits it into four disjoint, 

separated regions.  If, indeed, we wish to explore the analytic logic of the continuum by this 

process, these regions may or may not be connected, but each sub-region may contain no 

point in common with the others.  The following are partitions consistent with this underlying 

principle: - 

 

0 1

1 2 3 4{1} {2} {3} {4}
)
¼ ½ ¾

) )( )a ( )b

 

 

In this second model we have intervals where, for example,  

 

               1 2 3 4
3 31 1 1 10, , , , , , ,14 4 2 2 4 4 . 

 

 Chap. 4 ] FINITE REPRESENTATION THEORY [ Sec. 4 



© Peter Fekete ] 72 [ 06 Oct. 2011 

 

 

(This is just an illustration; other choices of the lengths and end-points of the interval are 

possible.)  Observe in the second model that the first three partitions are half-open intervals – 

hence locally compact but not compact subspaces, whereas the final partition is a closed and 

bounded, i.e compact subspace.  This observation shall be vital to all that follows as we extend 

the partition to an actually infinite partition of the continuum. [For compactness, see Chap. 2 

Sec. 2.9.5 et seq.] 

We have a choice to make as to how we interpret these intervals.  (1) On the one hand, 

we could view each part as a whole whose contents make no contribution to the resultant 

algebra/logic, which is discrete and atomic.  (2) Alternatively, if the content of each interval is 

included in the algebra then the partition ceases to be atomic, because the analysis of the 

space can be continued further.  What then arises is an interval algebra that is continuous and 

non-atomic. [Chap. 5, 4.2 / 4.3]  The endpoints of the partition constitute a scaffold or skeleton 

and the number of parts may be thought of as a mesh through which we sift the information 

that is contained in the interval    0,11 .  All partitions of the space into a discrete and finite 

mesh produce an atomic lattice, but there is always the possibility of a finer partition – that is, 

one that uses more partitions.  

 

5 Boolean lattices as metric spaces 
 

Not only is 42  a topological space but it is a metric space [Chap. 2, 2.9.10], equipped with an 

intrinsic unit of measure, which is based upon the “height” of the lattice point above 0.  The 

meaning of height is intuitively conveyed by the following version of the lattice 42 , in which 

the points have been canonically written in terms of joins of atoms. 

 

1

0

1 2 3 4

1 2 1 23  3 1 24  4 3 4

1 2 41 2 3 1  43 2  43

1

2

3

4

 

 

I also call height the radial distance from 0.  This is the intrinsic unit of measure in a Boolean 

algebra.  For example the height of p in 42  is 2 (units) since   p q p0  is a shortest chain in 

42  joining 0 to p of length 2.  The distance of      1 2 3p q  from    3p q  is also 2.   
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 The formal definition of the metric requires a number of technicalities.  If the reader 

is happy with the intuitive presentation above, he may omit the following: - 

5.1  Definition, valuation 

By a valuation on a lattice L is meant a real-valued function (functional)   v x  on 

L which satisfies, (V1)                   v x v y v x y v x y . A valuation is isotone if and 

only if, (V2)         implies x y v x v y  and positive if and only if         implies x y v x v y . 

5.2  Theorem 
In any lattice L with an isotone valuation, the distance function 

           ,d x y v x y v x y  satisfies for all , , ,x y z a L  

       
     
     

  

    
     

M1 , 0 , 0 , ,

M2 , , , triangle inequality

M3 , , ,

d x x d x y d x y d y x

d x y d y z d x z

d a x a y d a x a y d x y

 

5.3  Definition, cover 
For a, b in P we say b covers a, or a is covered by b, if a b  and whenever 

 a c b  it follows that   or a c b c .  We use the notation a b  to denote a is 

covered by b.  We also say b is the immediate successor of a, and a is the 

immediate predecessor of b. 

5.4  Theorem 
Any finite nonempty subset X of a poset has minimal and maximal members. 

Remark 

In chains, the notions of minimal and least (maximal and greatest) 

element of a subset are effectively equivalent.  Hence: - 

5.5  Theorem 
Any finite chain has a least (first) and greatest (last) element. 

5.6  Theorem 
Every finite chain of n elements is isomorphic with the ordinal number n (the 

chain of integers 1, ... n).   

Remark 

This ordinal n is length of the chain. 

5.7  Definition, length 

The length  l P  of a poset P is the least upper bound of the lengths of the 

chains in P. 
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5.8  Definition, height, atom 

In a poset P of finite length with 0, the height or dimension   h x  of an element 

x P  is, by definition, the least upper bound (supremum) of the lengths of the 

chains     0 1 ... lx x x x0 between 0 and x.  If P has a universal upper bound I 

then clearly       h I l P .  Clearly also,    1h x  if and only if x covers 0; such 

elements are called atoms or points of P. 

5.9  Result 
A nonzero element a of a lattice, L, is an atom iff for all elements x L  we 

have      or  0x a x a x . 

5.10  Definition, graded posets 
A graded poset is a poset P with a function  :g P  from P to the chain of 

integers in their natural order such that 

       
       

G1  implies strict isotonicity

G2 If  covers , then 1

x y g x g y

x y g x g y
 

5.11  Definition, Jordan-Dedekind chain condition 
All maximal chains between the same endpoints have the same finite length. 

5.12  Lemma 
Let P be any poset with O in which all chains are finite.  Then P satisfies the 

Jordan-Dedekind chain condition if and only if it is graded by   h x . 

5.23  Result 
In any finite Boolean lattice height is a valuation that induces a distance 

function that acts as a measure on the Boolean lattice. 

6 The relationship between logic and the lattice 
 

There is a close relationship between a lattice and its logic; the perspective I am adopting here 

is that conceptually it is the lattice that comes first, so that the logic is built over the lattice.  

This is the same perspective as that of Aristotle who builds syllogistic logic over the relation 

of part to whole, which, thanks to the work of Birkhoff [1940] we now know to define a lattice.  

The primary relation of logic is consequence; the notion that one proposition logically forces 

another.  Analytical logic is an application built over the fundamental properties of the lattice, 

that is, the relation of part to whole.  In order to create analytical logic we must add an 

extrinsic sense of direction to the lattice – an up and a down.  Propositions are mapped to 

lattice points and by convention any proposition that lies below another implies those 

propositions that come above it in the lattice. 
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1

p q pqp qº

p q  p q p qp q

p qp q  p q  p q

p qº

0

LOGICAL
CONSEQUENCE

 

 

The relation of consequence is denoted by  ; the expression    may be interpreted to 

mean that the lattice point named by   lies below the lattice point named by   and is 

connected to it.  In this relation   is called the premise and   the conclusion.  This relation is 

clarified by the concepts of filter and ideal: every lattice point (proposition) that lies in the 

filter of a lattice point (proposition)   is implied by  ; every lattice point that lies in the ideal 

of a lattice point   implies .  [See 6.1 below.]  We identify filters by tracing lines in the lattice 

diagram upwards and ideals by tracing such lines downwards.  We see that in the relation 

   that in fact the whole filter is the conclusion of the premise , so we may describe this 

logic as single premise, multiple conclusion.   The logical proposition p q  corresponds in 42  

to the lattice point 1  and the partition  1 .  The filter of p q  comprises every lattice point 

where  1  is a subset.  Thus, the filter contains: - 

 

 

 
     
     

 

   

       

1

1,2 1,3 1,4

1,2,3 1,2,4 1,3,4

p q

p q p q

p q p q p q

1

 

 

This filter may be visualised as follows: - 

p q

p

q
p  q

p q
p q

 p q

1
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Based on these relations in the filter we may write, for example, p q p ,   p q p q  and 

so on.  The ideal of p q  comprises: - 

  

 
     

     

 

    

       

1,2,3

1,2 1,3 2,3

1 2 3

p q

p q p q

p q p q p q

0

 

 

Formally, an ideal is defined as follows:- 

6.1  Definition, ideal 
An ideal is a nonvoid subset M of a lattice (or join-semilattice) L with the 

properties 

   1 , ,  imply p M x L x p p M  

   2 ,  imply p M q M p q M  

 

The filter is the dual [see 2.5 above] concept.  Davey and Priestley (Davey and Priestley [1990] 

p. 13) introduce the helpful terms up-set and down-set for filter and ideal respectively.  These 

are useful because they help one visualise the meaning.  They also use the terms increasing set 

and order filter for filter, and decreasing set and order ideal for ideal. 

The essential concept of logic is that of proof path, formal derivation or deduction.  

This is symbolised by  .  With this concept we encounter formal analytic logic proper.  The 

relation of consequence is a property of a lattice endowed with an extrinsic sense of direction 

(an “up” and a “down”) that gives meaning to the statement   is a consequence of  .  With   

we encounter the idea of a demonstration of this by a finite deduction according to rules.  

Thus   is associated with a system of rules of inference each of which allows one to navigate 

upwards in the lattice along a path contained in a filter.  Our example here is the lattice 42 , 

which, being finite, has no need of quantifiers; we have seen that every one of its lattice points 

can be labelled uniquely in terms of the atoms    1 2 3 4, , ,  using only the join,  .  Hence, we 

only need one rule of derivation, which is a rule for the introduction of the symbol  . 

 6.1  Rule for the introduction of disjunction 
Let   be any proposition corresponding to a point of the lattice; let   be any 

other proposition corresponding to a point of the lattice.  Then 



 




 

shall mean that from   we may infer the proposition   .  This is also 

written,    . 
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When   0  then we derive trivially the law of identity,   , which is also written,   , 

so in this way we confirm the classical description of analytical logic as whatever follows from 

the law of identity.  This rule suffices not only for 42  but for every finite Boolean lattice, n2  

where n . [See finite representation theorem, 10.1] 

We see from this description that the negation sign is not formally required by 

classical propositional logic founded on atoms.  Also the proposition 0 1  would correspond 

to a collapse of the interval   0,1  to a single point.  Since our analytic logic is based upon a 

partition of the space   0,1 , 0 1  is not a possible conclusion of any analytical logic.  Since 

negation is also inessential in any finite system, a fortiori, 0 1 is not a possible conclusion of 

any finite analytical logic.  Analytical logic derives its consistency from the partition of the 

interval   0,1  into disjoint segments, here called atoms, such that no two atoms can 

contingently coexist in the sense of a lattice meet (conjunction).  Therefore, the consistency of 

any analytical logic derives from the consistency of the relation of part to whole, which is a 

synthetic relation extrinsic to any formal system.  Consistency can only be a property of a 

formal system in a derivative sense, since in its primary sense it originates from the geometric 

intuition of the relation of part to whole, which is not a property of formulae, though 

formulae in a sound system of analytic inference must reflect it.  In a system of deduction no 

rule may be allowed to introduce an inconsistent statement; the rules must be sound.9  Since 

our system at present has only one rule, which is sound, and no symbol for negation, this 

system is sound overall.  Therefore, by geometric intuition, it is also consistent. 

It may be a surprising observation that classical propositional logic based on atoms 

requires only one logical connective and one rule of inference, so at this juncture I shall 

digress to discuss why other logical connectives and rules of inference are introduced.  Firstly, 

let me make an observation about the atoms in a finite Boolean lattice – conceptually, these do 

not exclude negation, but on the contrary embody it.  For an atom,  , marks off a segment of 

the space   0,1 , and partitions it into a part that affirms   and a part that affirms its 

complement   which is denoted by  .  

 

0 1

not- not-  

 

The transformation from a system of generators,   , , ,p p q q , to a system of atoms: -  

              1 2 3 4, , , , , ,p q p q p q p q  

is akin to a change of basis of a vector space, and has the advantage of rendering transparent 

the  underlying  simplicity  and  constructible  nature  of  the  system.    Both  historically  and 

                                                           
9 A formal system of deduction shall be sound iff no deduction permits us to infer a contradiction.  This is 

also expressed by    then the logic is sound�  . 
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psychologically speaking formal logic has two origins: (1) in the geometric intuition of the 

relation of part to whole that underpins the syllogism, and (2) in natural language inferences, 

whose connectives are and, or, not and if... then.  It is the very essence of formal logic to force 

natural language inference into the frame of geometric intuition, and to treat those 

connectives as if their meaning were wholly expressed by the spatial relation of part to whole.  

The fruitfulness of this idea has been like a sea sans bound; as a generality, it is false. 

In an application involving the mapping of natural language inferences onto a formal 

system, it is understandable that we should seek to build a formal system that embodies the 

rules of inference of natural language, albeit unconsciously influenced by the spatial analogy: 

such are the systems of Gentzen10.  Furthermore, in this endeavour, we do not begin with the 

atoms and the relation to the atoms is not perspicuous; we begin, rather, with propositions 

that are equivalent to joins of atoms.  Without a negation symbol we cannot get outside the 

filter generated by a proposition p; similarly, we need conjunction in order to move down the 

lattice in the direction of the atoms.  Hence, the language is expanded from just comprising   

to include   and  .  The construction, if ... then, lies at the very core of human ability to 

attach ideas to one another and “flow” through them; hence, we add   to the system, and 

also, equivalence  . 

With the symbol   we encounter a real stress between the two systems of (1) natural 

and (2) formal language; these are reflected in the paradoxes of material implication.11  In 

modus ponens: “If p then q, p, therefore q” we seem to produce q by following through a train 

of thought that starts with p and leads beyond it to q.  This may be true of natural language 

but certainly is not true of formal language, where there is strictly no train of thought 

whatsoever.  It is important to understand that in formal analytical logic, “if p then q”, 

represented by p q  means nothing more than  p q  and therefore merely denotes a lattice 

point.  Hence the inference  ,p q p p q�  becomes a statement of equivalence of names of a 

lattice point: - 

   
   

     

    

 

p q p p q p

p p p q

p q

 

                                                           
10 Gentzen produced systems of “natural deduction” and “sequent calculi” that were ostensibly modelled 

on natural language inferences.  See Gentzen [1969] and Ungar [1945].  I shall not dwell on this point in 

this paper, save to express my view that his theory was unconsciously influenced by the nature of analytic 

logic and the results are not true reflections of natural language inferences. 

11 The “paradoxes” of material implication are            1 ; 2p p q p q p  .  These are 

“paradoxes” because their meaning strikes one as odd.  Likewise, there are inferences involving 

equivalences that are “paradoxical”; for example,  p q p q .  The mere fact that p and q are 

contingently given entails that they are equivalent.  This strikes one as odd.  The problem is resolved by 

realising that the equivalence asserted of p and q is contingent extensional equivalence; and that it is not 

asserted that p and q have the same meaning, or are equivalent in all possible worlds. Another “paradox” 

is,      p q q p . As a statement of “meaning” this is absurd.  However, its extensional equivalent is, 

       p q q p , which is a statement of the law of excluded middle.   
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Then the statement  ,p q p q� is equivalent to p q q�, which in lattice terms is valid 

because q lies in the filter generated by p q .  Likewise, if p q  represents a disjunction of 

atoms,       
1 2

...
ni i ip q , then q is a dilution of this statement by the addition of further 

atoms to the disjunction,                
1 2 1 2

... ...
n mi i i j j jq .   

6.2 (+)  Principle of dilution 
All deductive inference in analytic logic proceeds only by dilution of content; we 

can never reach a statement of generality greater than that already 

encompassed by the premises.   

 

This is why the logic is analytic and is precisely why it becomes absurd to suggest that 

arithmetic could be a manifestation of some form of analytic logic.  About this problem, 

Poincaré wrote: - 

 

If ... all the propositions [of mathematics] may be derived in order by the rules 

of formal logic, how is it that mathematics is not reduced to a gigantic 

tautology?  The syllogism can teach us nothing essentially new, and if 

everything must spring from the principle of identity, then everything should be 

capable of being reduced to that principle.  Are we then to admit that the 

enunciations of all the theorems with which so many volumes are filled, are only 

indirect ways of saying that A is A?  (Poincaré [1982], p.394) 

7 The vacuity of analytic logic 
 

For any lattice there is no single name of a given lattice point: if p and q are names of lattice 

points, then  p q  is name of another lattice point; but that point is also named by p q  

among others.  The collection of all names of a lattice point is an equivalence class; where we 

write  p q  we should write    p q  to denote the equivalence class of which  p q  is its 

representative and p q  is another member.  The Boolean algebra generated by these classes 

is called the Tarski-Lindenbauum algebra (See also Mendelson  [1979], p. 43.); this is the 

Boolean lattice/algebra that we have been working with all along, it being tacitly assumed that 

the names we give to lattice points are just representatives of those points.  The Tarski-

Lindenbaum algebra is also known as the algebra of statement bundles.12 [See Chap. 5, Sec. 5] 

                                                           
12 Any set of sentences is not closed under the operations of conjunction and disjunction and therefore 

does not form a Boolean algebra. (Mendelson Elliott [1970] p.160 et seq.)  The conjunctions p q  and 

q p  are not identical.  Therefore, they do not define unique joins in a lattice.  So the set of sentences, 

per se, is not a Boolean algebra.  This may be a surprising result, since it is natural to think of the set of 

sentences under the logical operations of conjunction, disjunction and so forth as a Boolean algebra.  This 

difficulty is circumvented by the following definition of equivalence classes on the set of sentences:  

Define the equivalence class of the sentence p by     :p q q p .  That is, as the set of sentences logically 
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Poincaré’s claim – that to say all mathematics is analytic reduces mathematics to “a 

gigantic tautology” – is worth illustrating further.  Firstly, the canonical name of any tautology 

is 1, the “highest” point in the lattice, for which we have 1 .  Let   1  denote the equivalence 

class of the 1 element in a Boolean algebra.  Members of   1  are to be called names of 1.  It is 

the multiplicity of these different names that conceals the essentially vacuous nature of 

analytic logic.  Take, for instance, the tautology     p p q q , which does not look 

vacuous: - 

  
  
  

    
   

  

   

    

     

      

      

p p q q

p p q q

p p q q

p p p q q

p p p q q

p p p q q

1



 �

 �

 �

 �





 

So     p p q q  is just a diluted form of the law of excluded middle. 

7.1 (+)  Theorem, canonical representation of names of 1 
Each name of 1 has a canonical representation of the form 

1 1 1# # ... #  or 1 1 1# # ... #   

where   or #=  and     1 2 ... np p p , and each ip  is a contingent 

proposition.  In the expression 1 1 1# # ... #  each 1 is a separate name for the 

law of excluded middle.  For example,          p p q q1 1 .  We can allow 

duplication of the same irreducible proposition; for example, 

         p p p p1 1 . 

Proof 

The absorption laws for a Boolean algebra gives: - 

      1 1 1 1 1 1 1 1  

Eliminate material implication in favour of joins and meets; i.e  

   dfp q p q .  Then the language of the propositional calculus 

contains only the symbols  (meet) and  (join).  Now consider a wff   

in the language such that  .  Suppose   is not of the form 

1 1 1# # ... # .  That is    1 1 1# # ... # .  By a tautology, 

    1 1 1# # ... # . Then: - 

                                                                                                                                                                      
equivalent to p.  These equivalence classes are also called statement bundles.  With this definition we may 

obtain the following result: the set of statement bundles is a Boolean algebra. 
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 
 








  

  

   

1 1 1

1

1









# # ... #
 

 Since we always have 1 , this is a contradiction. 

 

For a second version of this idea, let   be a wff in the language such that  .   Then, 

      1 1 1   � .  To extend this result to the predicate calculus, quantifiers 

must be eliminated in favour of infinite lists,         1 2 ...x x p p p  where   is any 

ordinal, finite or transfinite.  (It is a result that the class of all ordinals can be well-ordered.)  

Once we have eliminated quantifiers the only symbols remaining are  (meet) and  (join) and 

the preceding argument applies. 

7.2 (+)  Theorem 

 Eq 1  is a proper class. 

 Proof 

Given the elimination of quantifiers [Chap. 7, 4.4] in favour of infinite 

lists in conjunctive or disjunctive normal form, then the lists can have 

length of any ordinal.  Since the class of all ordinals is proper [Defined, 

Chap. 2 / 1.3.5], so then is  Eq 1 . 

 

A tautology is a statement in canonical form, 1 1 1# # ... #  or 1 1 1# # ... # , where the list is 

finite.  A logical truth is either a tautology or a statement of canonical form, 1 1 1# # ... #  or 

1 1 1# # ... #  where the list is infinite. 

7.3 (+)  Example 

Rule of instantiation,      x x a  , when quantifiers are eliminated becomes, 

   1 2 ... ip p p p  . 

 

The differing names of 1 form an equivalence class and members of it also form a lattice, part 

of which is shown thus: - 

 

1 1

1  1 1  1

1  1  1     1  1 1  1  

1  1 1  1

1  1  1     1  1  1   1

1  (   ( 1  1  (1  1) 1  1)  (1  1)     
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7.4 (+)  Definition, pseudo-lattice 
The lattice above shall be called the pseudo-lattice of 1.   

 

It is a pseudo-lattice because all the individual lattice points here are all names of the same 

lattice point in the lattice defined by the partition of some space into atoms. 

8 The global geometry of analytic logics 
 

There is another representation of 42  showing it as related to a manifold embedded in 4-

dimensional Euclidean space, 4E . 

 

p p

q

q

0

1

p q
p q

 p q

p q

  

 

In this diagram we should give particular attention to the lattice points: - 

                     p q p q p q p q p q p q  

These are shown at the centre of the diagram, but they represent distinct points, so that there 

are two “interpenetrating sheets” dispanded throughout the interior of this “topological 

sphere” and three-dimensions is insufficient to embed this structure.  This structure, 

nonetheless, is a manifold, notwithstanding the fact that it is defined by the points on it 

rather than the sheets, which would appear to make it discrete.13  The reason for this is that it 

is generated from a partition of the closed real line   0,1 , which is a manifold.14 

                                                           
13 A differentiable manifold is continuous.  Continuity is relative to what constitutes an open set in a 

topological space.  Therefore, a structure that is discrete when viewed extrinsically may be continuous 

from an intrinsic perspective. 

14 The lattice 42  is a discrete structure, but it may be viewed as the framework of a structure whose 

interstices may be likened to a rubber sheet.  Therefore, it is possible to define a differential geometry on 

this structure, and I conjecture that there exists a differential geometry of discrete structures.  In my 

original investigations of the problem concerning the distinction between those structures that are 

effectively computable and those that are not, I aimed to discover that there are geometric invariants akin 

to those encountered in, for example, the theorem egregrium  that would show that the global geometry 

of a structure to which a digital computer is bound is distinct from that to which human intelligence, as 

manifested through arithmetic, is bound.  I still think this is a potentially fruitful area of research. 
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p

p q  p q p qp q

0 1

1 2 3 4

q

 

 

Since the underlying structure is a manifold, the structure generated from it is also a 

manifold.  In the above diagram I have also shown those parts of the partition of   0,1  that 

correspond to propositions p and q.  In any logical application p and q represent contingent 

statements.  For example p could represent “The crew is male” and q “The crew is going to 

Mars”.  Then p q  means that anyone going to Mars is male.  This is a contingent statement 

because females could have been chosen for the expedition but weren’t.  Nonetheless, the 

effect is to render the distinction between p and q for the given domain (crew) unnecessary 

(here “for the expedition to Mars” and “male” are equivalent).  In other words, if we view each 

proposition p, q as a dimension (they are independent vectors), then a state of affairs in which 

we have p q  collapses the dimension.   

 

p0 1

q

p

q  

 

Another way of identifying this state of affairs is from our original description of the 

underlying space of 42 . 

 

p q 

p q      p q  

  p  q

{1}

{2}

{3}

{4}

p

q

p

q

p  q

 

 

Whereas p and q are vertical and horizontal partitions of this space, p q  is a diagonal 

partition.  If we eliminate all diagonal (and anti-diagonal) sets from our model of a lattice, we 

obtain a shell.  For 42  this is:- 
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p p

q

q

0

1

p q

 p q

 

 

Assuming the points are pinned to a manifold, this has Euler characteristic: 

       14 36 24 2V E F , making it a topological sphere. [Chap. 2, Sec. 2.11]  The point 0 

represents an absolute contradiction, so we can never affirm that.  The lowest level of the 

model is that of the atoms, which in 42  are: - 

              1 2 3 4p q p q p q p q  

Therefore, deleting 0 also from the manifold, we obtain as a model of the analytic logic of 42  

as the punctured sphere or disk: - 

 

p  q   p  q

p  q 

 p  q

1

p q

q p p  q

p  q 

 p qp  q

{2}

{1}

{3}

{4}

 

 

This has Euler characteristic:         13 24 12 1V E F .  As we expect, it is a topological 

disk. 

If now we return to the model in which we had the sphere with the addition of the 

vertices: - 

                     p q p q p q p q p q p q  

we note that these add 2 vertices, 4 edges and 4 faces to the structure, thus giving Euler 

characteristic:        16 40 28 4V E F .  In the model of the punctured sphere (deleting 

0) we observe that we can replace q by p q  and q  by  p q , giving another disk: 
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1

p

pp  q

p  q 

{1}

{2}

{3}

{4}  

(By swapping one pair of the outer labels we obtain a new disk.)  The model of 42  comprises 

two topological spheres, one lain “over” the other, and sharing the points shown filled above.  

This accounts for the Euler characteristic of 4 for the double-sphere model.  These are two 

spheres15, 1 1S S  lain side by side and joined at all but 2 lattice points.  Once the 0 is deleted, 

we have two disks 1 1D D  as the model of the analytic logic 42 .  Examining a refinement of 

the partition of   0,1 ; for example, when we have eight partitions (atoms). 

1

2

3

4

5

6

78

p q

r
 

 

In this diagram, for convenience, I have dropped the curly brackets, indicating the partitions 

by numbers 1,2,3, ... .   The atoms are: - 

 

   
   
   
   

 

 

 

 

    

      

      

        

1 2

3 4

5 6

7 8

1 2

3 4

5 6

7 8

p q r p q r

p q r p q r

p q r p q r

p q r p q r

 

The truth functions are combinations of these.  For example: - 

 

 
 
     
 
   

 
     
 
 
 

  

      

  

   

1 1,2,3,4,5,6

1,2 1,2,3,4,5,6,7

1,2,3 1,2,3,4,5,6,7,8 1

1,2,3,4 1,2,5,6

1,2,3,4,5 1,3,5,7

p q r p q

p q p q p q r

p q p r

p q

p p q r r

 

                                                           
15 I am using 1 1S S  to intuitively denote the special relationship between the spheres in this case.  It 

would require further analysis to define the relationship formally. 
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Each higher lattice point is a dilution of the information contained in the lattice point below it.  

The topology as a whole is still subdivided into disjoint structures.  There are 256 lattice 

points, being all binomial coefficients of 8 symbols.  In the disk diagram there will be seven 

concentric circles centred on 1 (the eighth); in each of the 7 there will be 8 lattice points.  Each 

permutation of the symbols 1 to 8 defines a disk, but a number of these will be identical; it is 

a problem in combinatorics to determine the precise number of sheets. 

9 Analytic logic does not encompass order 
 

There is yet a further characterisation of the lattice 42  that derives from the observation that 

the set  1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210  where   least common multiple and    

greatest common divisor defines a Boolean lattice16. 

 

1

0

2 3 5 7

6 10 15 14 35

30

21

42 105

210

70

1  

 

This is just one among an infinite collection of number sets that define a lattice that is 

isomorphic to 42 .  This lattice gives rise to the logic of the partition of the number 210, which 

is based on the observation that a number may be likened to a space.  For example, any 

number that is the unique product of 4 prime numbers:     1 2 3 4p p p p  generates a lattice 

isomorphic to 42 . 

 

1 2 3 4p p p p

1 2 3 4p p p p

 

 

If the lattice is inverted (as we are allowed to do [Principle of duality 2.5 above], then we 

obtain a new lattice that embodies the logic of divisibility.  For example, we have from x is 

divisible by 6 the conclusion x is divisible by 2, because 2 belongs to the filter defined by 6.  In 

this inverted lattice, the prime numbers become prime ideals [Chap. 5, Def. 7.19]. 

                                                           
16  Let m be a positive integer.  Let the structure A be given by 

          0 1 1 gcd , lcm ,1A A

m
m p q p q p q p p

p
 

Then A is a Boolean algebra iff m is not divisible by the square of any prime. 
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 9.1  Example, logic of divisibility 
 This is an example of an inference in the logic of divisibility. 

   

   

 

 
 



 



To prove: 4 2

1. Let 4

2. 4  for 

3. 2 2

4. 2

5. 4 2

6. 4 2

n n n

n

n m m

n m

n

n n

n n n

 

This is equivalent to the claim that 2 n  lies in the filter of 4 n , or that  

 2 0,2,4,...n  is a supraset of  4 0,4,8,12,...n . 

Reminder: All inferences in the lattice proceed by dilution.  Thus, p q  

is only possible if q is a join of which p is a member.  Thus   ...p p  is 

the fundamental rule of inference.  [See 6.2 above: the principle of 

dilution.] 

 

Analytic logic is founded upon the concept of a partition of some space, and the relation of 

part to whole thereby generated.  I observed above that the partition need not be uniform, 

uniformity of space being a concept extraneous to analytic logic, having some other synthetic 

origin.  This self-evident conclusion follows immediately upon the observation that nothing is 

required to be added to the concept of the partition in order to generate a complete analytic 

logic – at least, not so far as the finite case is concerned, for we have as yet to examine the 

infinite one.  Now I add the following additional observation: that order is also extrinsic to this 

bare notion of an analytic logic founded upon a partition of space.  Any finite set may be well-

ordered; and therefore, we may order the atoms of a partition and arbitrarily designate them 

as being in increasing order.  The expressions of any formal language may also be well-

ordered, and so we may order the labels of the atoms if we so wish.  If indeed our intention is 

to model the analytic logic of the continuum, then we may regard our atoms as atoms of space 

and require them to be ordered in the sense of progressing increasingly from 0 to 1.  In other 

words, we impose upon the partition the additional structure inherited from the synthetic and 

geometric intuition of direction.  Analytic logic is concerned with cardinal numbers [Defined 

Chap.2, Sec. 2.7 et seq.] and shows that each cardinal forms a division ring; the uniqueness of 

prime factorisation turns each of these rings into a lattice.  Nonetheless, the concept of an 

ordinal number makes no appearance at the ground level in the notion of an analytic logic, 

and, unless there is some addition arising from the consideration of lattices founded upon 

some infinite partition of   0,1  any treatment of ordinal numbers must make its presence felt 

in some other way.  All ordinal successions are founded upon the prime succession of the 

natural numbers and upon the synthetic act of counting that generate them.  Prima facie, 

there  is  no  reason  to  suppose  that  arithmetic is a form of analytic logic, to which I add the  
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following caveat: it remains to be seen whether the embedding of set theory within first-order 

logic and the definitions of number thereby created serve to refute this conclusion, which I 

hereby propose as a temporary one based on the evidence so far presented. 

9.2  About ordered pairs 
 
As the concept of an ordered pair may be defined in terms of sets it may be objected that, 

notwithstanding the observations above, order is an analytic relation.  This is a point of view 

commonly expressed in the literature: - 

 

Occasionally, one must resort to an artificial definition in order to “embed” 

some mathematical notion smoothly in ZFC.  One such definition is Kazimierz 

Kuratowski’s definition of the ordered pair of any two objects: 

      , , ,x y x x y .  The set on the right side of this equation has no conceptual 

connection with ordered pairs.  It is used simply because it allows us to prove, 

in ZF, the two essential properties of ordered pairs; that the ordered pair of any 

two sets exists, and that    , ,x y u v  if and only if   and x u y v .” (Wolf 

[2005] p. 75.)17   

 

Applying Kuratowski’s definition, we see 

                                  0,0 0 , 0,0 0 , 0 0 1,1 1 , 1,1 1 , 1 1  

These equivalences indicate the arbitrary nature of the definition, since the connection 

between   0  and  0,0  is wholly conventional.  Consider also: - 

          0,2 0 , 0,2 1, 0,2  

    
     

                     





   

0,0,0 0, 0,0

0 , 0, 0,0

1, 0 , 0, 0,0 1, 1, 0 , 0,0,0 1, 1, 1,1 1, 1, 1

 

I contend that the general “identical up to isomorphism” rule is just false.   

9,3  Order invariance 
 

There is a third essential property of any ordered pair  ,x y ; namely, that x comes first and y 

second.  But this statement “begs the question” since formalists must insist that only the 

formal properties of sequences define them.  If we seek to embed the theory of ordinals in the 

theory of partitions (unordered sets), there must be some invariant method for constructing 

the ordinals from these partitions.  Observe that one version of our lattice 42  is: - 

                                                           
17 There is a similar remark by Potter, who draws parallels with Benacerraf’s problem [Chap. 16, Sec. 3]; he 

writes, “the ordered pair as it is used here is to be thought of only as a technical tool to be used within the 

theory of sets and not as genuinely explanatory of whatever prior concept of ordered pair we may have 

had.” (Potter [2004] p. 65.) 
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1

0

2 3 5 7

6 10 15 14 35

30

21

42 105

210

70

1  

 

This is based on some disjoint partition of space  

 

2 3 5 7  

 

However this is achieved, the structure of the lattice does not depend in any way on the 

internal structure of the partitions 2, 3, 5, 7; it is wholly determined by the joins built upon it.  

Observe the middle line of the lattice and how the ordinals there run in the sequence 6, 10 ,15, 

14, 21, 35.  This is not an increasing sequence, but the lattice points may be rearranged so 

that it becomes an increasing sequence.  If the structure of the ordinals built over the partition 

is invariant then we expect the same pattern to emerge for every other isomorphic partition of 

42 .  However, the partition 

 

2 3 5 13  

 

Creates a lattice where the lattice points exhibit a different order: - 

 

78 130 195

390 1

0

2 3 5 7

6 10 15 14 35

30

21

42 105

210

70

1

13

26 39 65

 

 

The middle row now runs 6, 10, 15, 26, 39, 65 and the order of the two middle terms has been 

reversed.  (If it is objected that the primes, 2, 3, 5, 13, in this case are not consecutive primes, 

then consider  17,  19,  23,  29,  which  are  consecutive  and  where  the order is also reversed: 
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 19 23 437 ,  17 29 493 .)  Therefore, isomorphic lattices do not give rise to an order 

invariant relation on the ordinals.  Alternatively, if order invariance is insisted upon, then 

some lattices must be excluded and the logic as a whole ceases to be complete.  A poset, P, 

can only be a lattice if for all ,x y P , x y  and x y  exist in P. 

 9.4 Definition, complete lattice 

Let P be a non-empty ordered set.  If S  and S  for all S P , then P is said 

to be a complete lattice. 

 

The distinction between a lattice and a complete lattice only arises in the case of an infinite 

set; all finite lattices are both atomic and complete.  When the lattice is infinite then to say it 

is complete is to allow that corresponding to every infinite collection S of distinct lattice 

points there is both an infinite meet and infinite join; that is what S  and S  signify.  One 

way in which to overcome the manner in which the above lattice inverts the order of the mid-

points is to delete one of these points – say the one labelled 26.  Then the structure ceases to 

be a lattice because  2 13 78  and  2 13 130 ; since it is not a lattice it is also not a 

complete lattice.  Hence, if order invariance of the ordinals is insisted upon, the lattice must 

cease to be complete.  This a fortiori makes the logic incomplete.  [See below, section 10.4 and 

definition 10.5.  Incomplete logics are the subject of Chapter 9.] 

 

 

10 Finite Boolean representation theorem and the hierarchy of analytic 
logics 

 

The properties of 42  described here are inherited by all finite Boolean algebras.  This is the 

content of the finite Boolean representation theorem. 

10.1  Finite Boolean representation theorem 
Every Boolean algebra is isomorphic to a field of sets. 

 Informal proof 

Using the notation of algebraic field extensions, we have   : 12 2 , 

where   0,12  is any Boolean algebra of two elements.  Every Boolean 

algebra 1k2  is a vector space over 2, and        
1 : 2 :k k2 2 2 2 , since 

      1 ... 1 timesk k2 2 2 2 .  Therefore, for all n ,    : 2n n2 1 .  

Each n2  has a unique basis of vectors that may be placed into one-one 

correspondence with the singleton sets of elements of some set A where 

A n .  We also have  2n n2 . 
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This theorem is proven formally in chapter 5, section 5.  We have started with the concrete 

example of the lattice 42 .  However, we see by the above inductive proof that the subject of 

our enquiry so far has been the class of all finite (Boolean) lattices:   : ,nB B n2 .  This set 

is potentially infinite, not bounded above and not closed.   

10.2  The hierarchy of analytic logics and reflections on Poincaré’s thesis 
 

The finite Boolean representation theorem uses the principle of complete induction in order to 

establish a theorem about all finite Boolean lattices.  Though we have as yet to examine the case 

where there is an analytic logic based on an infinite partition of space, we must conclude that 

no analytical reasoning based on a finite partition of space could possibly produce the 

generality encompassed by the finite Boolean representation theorem, or any similar theorem 

that is based on complete induction.  Regarding finite partitions, we see a hierarchy of analytic 

logics: - 

 
 
 

 

 



 

1

2

2

2

2

, Logic of 0 contracdiction; 1 necessary truth.

, , , Logic of one contingent proposition  and its negation.

, , , , , Logic of two contingent propositions.

... ... ...

, ... , Logic of  co
n

p p p

p p q q

n

2 0 1

2 0 1

2 0 1

2 0 1 ntingent propositions.

... ... ...

 

We encounter here the following principle – while analysis of the logic of n contingent 

propositions will produce the logic of k propositions for all k n , no amount of analysis will 

enable one to progress in the opposite direction to arrive at the logic of n k  independent 

propositions for all  0k .  In other words, analytic logic is analytic on the “way down” and 

synthetic on the “way up”.18      The  sequence  of  analytic  logics,  
0 1 22 2 2 2, , , ... , , ...

n

2 2 2 2   is  not 

                                                           
18 Leibniz attempted to demonstrate that arithmetic is analytic.  His argument is refuted by Frege in his 

Foundations of Arithmetic.  This is Leibniz’s putative proof that  2 2 4  is analytic.  Definitions:  

   1 2 1 1    2 3 2 1     3 4 3 1 

Axiom: If equals are substituted for equals, the equality remains. Proof: - 

              2 2 2 1 1 by 1 3 1 by 2 4 by 4  

Therefore, by the axiom  2 2 4 .  Frege’s counter-argument: The definitions each rest on primitive 

notions.  To clarify this, suppose in  2 1 1 , each 1 represents the same object.  Then '1 1'  means ‘1 

and 1’, which is just 1.  (Compare, adding the same point to the same point – you do not have two points, 

just one.)  Alternatively, suppose each 1 represents a different object, and let us mark this in some way; 

thus,   2 1 1 ; now we cannot add the two separate 1’s, or 2 is not uniquely determined if we do so.  

Suppose we have different 1’s:  2 1 1  - we have determined a different object 2.  Frege summarizes 

this objection succinctly: “If we try to produce the number by putting together different distinct objects, 

the result is an agglomeration in which the objects contained remain still in possession of precisely those 

properties which serve to distinguish them from one another; and so that is not the number.  But if we try 

to do it in the other way, but putting together identicals, the result runs perpetually together into one and 

we never reach a plurality.”   (Frege [1980] p. 50.)    This problem may be resolved as follows: In '1 1'   the 
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bounded above.  To achieve a generality relating to all analytic logics whatsoever there must be 

an additional principle of synthetic reasoning that enables one to generalise from the finite to 

the infinite case.  This principle is supplied by complete induction which is required to prove 

every generality about finite Boolean lattices, including the finite Boolean representation 

theorem, above. 

The theory of chains embeds complete induction as an instance of transfinite 

induction on transfinite ordinals; that is, we embed the sequence n  within a sequence that 

carries on into the transfinite, 
22  where  On and On denotes the proper class [Chap. 2, 

Sec. 1.3.5] of all ordinals.  This is a proper class that is unbounded above and though it is 

equipped with a principle of transfinite induction, we have an exact replication of the problem 

for the transfinite case as we have for the finite case.  There is no structure whatsoever that 

could be defined in such a manner that we could, by means of analysis alone of that structure, 

deduce a principle of induction that is defined on the whole of that structure.   

Analysis is based on the mental act of division a line or space into parts.  This mental 

act is known to us primarily as a finite act of the mind producing a finite division.  Suppose I 

divide a line into two parts, and then divide one of those parts again in two, and so on.  It 

takes an act of the mind to infer from the mere possibility that this division can be repeated 

indefinitely that there must be an infinite partition of the line.  This mental act is akin to the 

synthetic foundation upon which reasoning by induction is based.  Therefore, any principle 

derived from transfinite analytic logic must also have a synthetic basis. 

It is universally allowed by set theorists (a) that the proper class of all ordinals is not a 

set; (b) that the proper class of all sets is not a set; (c) that there is no set that can act as a 

model for all set theory; (d) though there may be sets that can act as models of parts of set 

theory, those parts would have to exclude axioms that permit the definition of transfinite 

induction – specifically the axiom of infinity.  The axiom of infinity asserts that there exists an 

infinite set; how could that possibly be a principle of analytic reasoning?  How could it be 

possible that by analysis of a finite structure alone one could arrive at the notion of the actual 

existence of a completed infinity?  Therefore, the prospects for demonstrating that all 

mathematics is a species of formal analytic reasoning are dim.  While it remains to work out 

thoroughly the mathematics of this situation to demonstrate conclusively that this is so, 

prima facie formalists must supply an answer to Poincaré’s thesis. 

part ' 1'  represents a primitive notion of taking the successor of a given number.  In counting we reach 

the next successive number 1n  from a given number n by ‘adding 1’.  Thus, ‘adding 1’ is a primitive 

notion.  However, while this clarifies the meaning of  2 1 1 , it does not overturn Kant’s interpretation of 

that sum as a synthetic proposition; but rather emphasizes that the number 2 is the synthesis of the 

number 1 together with the operation of taking its successor.  The numbers are given, not defined, and the 

operation of taking a sum is synthetic, not analytic.  No amount of analysis of the number 2 will ever reveal 

the number 3.  The number 3 is not a part of the number 2.  Furthermore, as Frege points out, Leibniz’s 

argument has a hidden premise.  The line    2 2 2 1 1  should be written     2 2 2 1 1 .  From this 

line, it is a further proposition to step to        2 1 1 2 1 1 .  This line assumes a general property of 

addition of numbers, namely, that they are associative: For all , ,a b c        a b c a b c .  This is a 

further axiom that expresses a primitive, that is, synthetic property of numbers.  Thus, Leibniz’s argument 

fails to demonstrate that arithmetic is analytic. 
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10.3  About axioms 
 

The theme of my investigation so far has been the relationship between any finite Boolean 

lattice n2  and the classical propositional logic built over it.  The perspective here is that 

conceptually it is the lattice that comes first and subsequently the logic is built over it, in the 

sense that it is an application of the relations found in the lattice to the problem of formal 

inference.  It is usual in other texts to reverse the order of presentation, to exhibit classical 

logic as a system in its own right; the connection to the lattice being sometimes obscure, 

though, to be sure, strongly forced upon one through the presentation of truth tables.  

Regular features of such a presentation are (a) a set of axioms or (b) a collection of rules of 

inference; (c) a proof of the deduction theorem; (d) a proof of the soundness and 

completeness of the system. 

What are axioms and rules of inference and what is their relationship to the lattice 

and the points that the lattice contains?  The main point to acknowledge here is that axioms 

are not atoms, and they do not appear as distinct lattice points.  Taken collectively, as a single 

conjunction, the axioms constitute a name of the maximal point of the lattice, representing 

tautology or logical truth, and denoted by 1.  The rule of inference (modus ponens or the rule 

for  -introduction) embodies the principle that whatever lies in a filter above a point in a 

lattice is held to be a necessary consequence of whatever statement that lattice point represents.  

Let   represent a complete set of axioms for the propositional calculus; then  1 .  The 

axioms of propositional logic make no reference to the size of the domain, which here means, 

the cardinality of the partition of   0,1 .  It is a consequence of the definition of a Boolean 

lattice as a complemented distributive lattice that only partitions of cardinality 2k  for some 

k  give rise to a classical logic, but other degenerate forms that are distributive but not 

fully complemented are encompassed by this approach19.    

Every lattice point p has alternate name     p p p1 .  This justifies the rule in a 

formal derivation that at any point an axiom may be introduced without assumption.  The 

introduction of an atom affirming a proposition is equivalent to the rule of assumptions.  In 

any application of the logic it is assumed that the affirmation of an atom is an affirmation of a 

contingent state of affairs, and that the logic then infers what must necessarily follow from 

what is initially given contingently.  A one step inference is a single application of either the 

rule of assumption (to introduce a statement corresponding to a lattice point, and constituting 

a premise), the rule permitting the introduction of any axiom (without premise), or any rule of 

inference.  A rule of inference corresponds to a step from one lattice point to another that 

immediately covers it.  A chain of deductions is a chain of sound one step inferences.   

Given two atoms   , ,i j i j  the conjunct (meet) of these is a contradiction: 

  i j 0 ; therefore, it is a rule that no two atoms can be conjoined in this way.  (This is 

affirmed  in  the  law  of  non-contradiction:     p p ,  since    , ,i j i j   entails    j i .) 

                                                           
19 See below, section 10.7 
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Consequently, any sound inference of the form: ,p q   may be combined into a single 

statement: p q  , since p and q cannot be atoms.  Therefore, classical propositional logic is 

single premise, multiple conclusion.  The step   ,p q p q   is a formal way of 

recognising that p and q represent lattice points that may be combined into a single lattice 

point defining a filter that contains them both.  It is customary to write the rules of logic in 

multiple premise, multiple conclusion form; this is not necessary.  It is also customary to see 

expressions of the form       where   is a set of premises.  This is either confusing or 

an error: sets represent disjunctive lists of members, for example,       1 2 1,2 , whereas in 

      the expression    represents a conjunction of items in a list and corresponds 

to a meet in the lattice.  So it is confusing to use the union symbol here, or to refer to   as a 

set; it is a conjunctive list not a disjunctive one.  

10.4 (+)  Definition, proof path, proof surface 
Let    ...A B C  be a chain of deductions, where each consequent is a valid 

inference from its antecedent.  Let the propositions A, B, C, ... correspond to 

points in the lattice and the arrows be interpreted as directed paths joining 

those lattice points.  The chain of deductions    ...A B C  is said to be a 

proof path.  Let A  represent all valid proof paths starting at the point A.  Let 

A  represent all paths starting with A, both valid and invalid – all paths leading 

away from A and joining A to any other point of space whatsoever.  Then we call 

A  a proof surface; it is a subspace of A .  The proof surface is also said to be 

the set of all consequences of A.   

 

Assuming that A does not represent a tautology 1, if the proof surface at A  coincides with 

the space A , then the logic is inconsistent.  A logic can only be consistent if the proof 

surface at any given (contingent) point is a definite subspace of the entire space.  Then there is 

a “force” that constrains all proof paths to lie on the proof surface.  We ask, what is the nature 

of this “force”?  In the case of analytic logic, that force arises from the actual analysis of some 

underlying space into its parts.  In analytic logic the proof surface is a proper filter and the 

“force” is the rule that constrains all consequences of a proposition to lie in the filter it 

generates.  But the notion of a proof surface is of more general application and need not apply 

only to lattices and their analytic logics. 

Let  ,  be propositions corresponding to distinct lattice points; then    means 

that there is a path in the lattice from   to  .  But this is ambiguous because if    then 

there must always be a path from   to   for that is also precisely what    means.  

Therefore, in this sense (and only in this sense) we have, as a matter of definition, 

     iff    .  This property is known as completeness, so we may say that in this sense 

every logic is trivially complete by definition.   This sense of completeness is trivial because no 

 Chap. 4 ] FINITE BOOLEAN REPRESENTATION THEOREM [ Sec. 10 



© Peter Fekete ] 95 [ 06 Oct. 2011 

 

 

distinction has been made in it between the symbols   and  .  Then, to do so, we must recall 

that logic is an application, and for human beings finite proofs are essential.  About this aspect 

Weyl wrote:  - 

 

As I see it, mathematics owes its greatness precisely to the fact that in nearly all 

its theorems what is essentially infinite is given a finite resolution.  But this 

“infinitude” of the mathematical problems springs from the very foundation of 

mathematics – namely, the infinite sequence of the natural numbers and the 

concept of existence relevant to it.  “Fermat’s last theorem,” for example, is 

intrinsically meaningful and either true or false.  But I cannot rule on its truth or 

falsity by employing a systematic procedure for sequentially inserting all 

numbers in both sides of Fermat’s equation.  Even though, viewed in this light, 

this task is infinite, it will be reduced to a finite one by the mathematical proof 

(which, of course, in this notorious case, still eludes us.). (Weyl [1994 / 1918] 

p.49) 

 

The fundamental reason for distinguishing    from    is precisely because human 

reason seeks finite proofs of statements that are essentially infinite in conception.  Up to now 

the only lattices we have considered have been finite.  There is another meaning to 

completeness – namely, that the set of axioms and rules completely define the lattice in the 

sense that if there exists a lattice path then a proof path can be given for it.  In this case the 

property of completeness is not trivial, since it is possible that the axioms and rules may not 

adequately characterise the underlying lattice.  If the underlying lattice is finite, then, given 

any incomplete set of axioms and rules, it would be possible to extend it to a complete one; so 

we say that the logic is essentially complete.  In this context, this essential completeness 

arises from the underlying finite nature of the lattices in question. 

An infinite lattice may be incomplete as a lattice.  A finite structure may behave in 

certain respects like a lattice and may be lattice-like without being a lattice because certain 

lattice points are missing.  In this case, too, the structure may be said to be incomplete.  If the 

underlying structure is incomplete then the logic built over it must inherit incompleteness 

from it.  In conclusion: - 

 10.5  Definition, complete logic 
1. A lattice is incomplete if not all unique joins and meets exist in the 

lattice.  In that event, any logic built over such a lattice must also be 

incomplete. 

2. A logic built over a lattice is trivially complete if the relation of proof 

path,   , is defined so that      iff    . 

3. A logic is complete, if given some set of axioms and rules of inference 

for the logic that define   , we have      iff    . 
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To this we add the following definition: - 

 10.6  Definition, categorical logic 
4. A logic is said to be categorical, if, given some set of axioms and rules 

of inference for the logic, there could be only one lattice up to 

isomorphism that matches it.  Such a lattice is called a model for the 

logic.  Another term for logic is language.   

 

Categoricity implies some cardinality condition – in other words, definitely insists upon a 

lattice of a certain size; if the lattice has a skeleton, then the cardinality of that skeleton must 

also be defined.  Discussion of categoricity inverts the general viewpoint of this paper – which 

is to start with lattices and investigate how those constrain analytic logics; the study of 

categoricity starts with a formal language and investigates the question: what models could 

match this language?  The standard axiomatisation of the propositional calculus is not 

categorical in this sense, because any finite Boolean lattice is a model for it.  The axioms are 

all true in the minimum (and only) indecomposable lattice   0,12 , which is a factor of every 

(finite) Boolean lattice. 

10.7  Intuitionism 
 
By intuitionism here I refer to the formal theory of infinite valued logics wherein the law of 

excluded middle does not apply.  So far I have not discussed this theory as a distinct 

alternative to classical logic.  The device of approaching the subject from the lattice first 

makes this unnecessary.  This is owing to firstly the observation that the underlying model of 

any intuitionist logic is a distributive lattice, and then to the following theorem: - 

 10.8  Theorem  
 Every distributive lattice can be embedded in a complete Boolean algebra. 

 (For proof, see Crawley and Dilworth [1973] p.89.  Birkhoff [1940]) 

 

This theorem means that every observation on Boolean lattices and classical logic made in this 

paper with regard to the problem of formalism is automatically inherited by distributive 

lattices and intuitionist logic. 

 

11 The two-in-one problem 
 

There is a distinction of general lattice theory that is of vital importance to this evaluation of 

Poincaré’s thesis.  This is the distinction between a chain and an antichain.20 

                                                           
20 The technical details on which this section is built may be found in chapter 8 of Davey and Priestley 

[1980].  It is the material in this chapter that acts as the essential foundation of the refutation of 

formalism and its associated metaphysical thesis of strong AI. 
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11.1  Definition, antichain 
An ordered set P is an antichain if x y in P only if x y . (Davey and Priestley 

[1990] p. 3) 

 

A chain is a set of isolated points with no covering relations upon them.  We begin with a 

partition of space, which is an antichain of atoms.  This collection of atoms acts as a skeleton 

for the lattice constructed over it.  Davey and Priestley comment, “Atoms were the right 

building blocks for finite Boolean algebras.  In order to represent finite distributive lattices we 

need a more general notion – that of a join-irreducible element.” (Davey and Priestley [1990] 

p.165) 

 11.2  Definition, join irreducible 
An element x of a lattice L is said to be join-irreducible if: - 

1. if L has a zero then  0x   

2.        or    for all ,x a b x a x b a b L  

Condition (2) may be replaced by: - 

2*       and    imply    for all ,a x b x a b x a b L . 

Meet-irreducibility is defined dually. The set of join irreducible elements is denoted 

 LJ .  The set of meet irreducible elements is denoted  LM  

 

In a Boolean algebra the set of atoms is equal to the set of join irreducible elements.  It is 

remarked, “In a finite lattice L, an element is join-irreducible if and only if it has exactly one 

lower cover.  This makes  LJ  extremely easy to identify from a diagram of L.” (Davey and 

Priestley [1990] p.166)  In a Boolean algebra every element, except the atoms, is a join of at 

least two other elements, so is not join-irreducible.  However, in a general lattice we get 

elements that are lying one unit above another element and are not joins of two elements – 

these are join irreducible.  At the opposite end of the spectrum to an antichain is a chain.  

[Chap. 2, Def. 2.5.3]  A chain is a totally ordered set.   

11.3  Join-irreducible elements of a chain 
In a chain every non-zero element is join-irreducible.  Hence if L is an n-element 

chain, then  LJ  is a 1n  element chain. 

 

It is observed that in a lattice L with no infinite chains, the ordered set     P L LJ M  meets 

the first two criteria for a skeleton, since the whole lattice may be described as the completion 

(by Dedekind-MacNille completion) of this set.  (See Davey and Priestley [1980] chapter 8).  I 

cite though will not prove here the Boolean (Birkhoff) representation theorem.  [Proven in 

7.2.9] 
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1.4  Birkoff representation theorem 

In a finite distributive lattice L we have the ordered set  P LJ .  Then it follows 

that  L PO  where  PO  is the family of all ideals of the lattice L. 

 

This means that any distributive lattice is isomorphic to the family of all ideals, and the 

skeleton generates it as such.  This will be clearer when we consider the Boolean Prime Ideal 

theorem in more detail.  [See 7.2.9]  The essential fact that we are seeking immediately in this 

context is the following. 

11.5  Lemma 

Let  L PO  be a finite distributive lattice.  Then  

1. L is a Boolean lattice iff P is an antichain, in which case    nO n 2 . 

2. L is a chain iff P is a chain;    1O n n . 

(See Davey and Priestley [1980] p.173).   

 

So we get a Boolean algebra if we have a skeleton of atoms, and something else otherwise.  For 

complete induction we require the chain   0,1,2,3, ... , yet to construct the Boolean algebra 

upon it we must treat it as if it were a set of atoms – that is, as an antichain. 

 11.6 (+)  The two-in-one problem 
Herein lies the limitation of analytic logic built over a lattice.  Logic in general is 

concerned simultaneously with two distinct lattice structures that appear to be 

incommensurable in one single lattice.  The order relation of   is needed for 

complete induction; the unordered antichain of an infinite partition is required 

for analytic logic.  I call this the two-in-one problem. 

 

We shall learn that the two-in-one problem is solved in an actually infinite lattice, but the 

manner in which it is solved will demonstrate categorically the falsity of formalism and the 

validity of Poincaré’s thesis.  
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Infinite Lattices 

 

 

 

 

 

1 The calculus of “predicates” 
 

Up to now the subject of our enquiry has been the classical propositional calculus and its 

correspondent model, the class of all finite Boolean lattices:   : ,nB B n2 .  The predicate 

calculus adds to the language of the propositional calculus: names of individuals  belonging to 

some domain or universe of discourse; variables standing for these names (ranging over the 

domain), predicate symbols,  and quantifiers.  In first-order logic there are also function 

symbols, but we concentrate for present just on the predicate part of the calculus.  A typical 

formula of the predicate calculus is just Pa , where P stands for a predicate and a for an 

individual [Defined, chap. 2 / 2.1]; the standard example is, “Socrates is mortal” where a is an 

alternate name for Socrates (“Socrates” is a name of Socrates) and P is the predicate “... is 

mortal”, which might from a philosophical point of view be said to denote the property of 

mortality1.  Such a reading is an example of an application of predicate logic – and another 

instance of the attempt to “force” natural language into the confines of formal logic.  In 

mathematical logic any pretension to be dealing directly with natural language is immediately 

dropped and we decide from the outset that our individuals shall be mathematical entities of 

some kind – numbers or sets.  The predicates are number-theoretic or set-theoretic predicates 

– for example, “... is even” or “... is less than ...”. 

We can introduce such predicates into a finite language.  For example, if the base set 

is given by   1,2,3,4A  where 1,2,3,4 now really are numbers and no longer mere partitions 

of space, then each subset of A shall define a predicate:  2,4  is the predicate “... even number 

in A”.  Two predicates shall be regarded as being identical if they share the same extension. 

[Chap.2, Sec. 1.3.1] The symbol  1  denotes the predicate “... is a member of A and is identical 

to 1.”  Thus, we see automatically that in this form the following result: - 

1.1  (+)  Result 
In the formal analytic predicate calculus all predicates can be eliminated in 

terms of propositions.   

                                                           
1 In this essay I am not concerned with the ontology of properties or properties, and neither assume them, 

nor discount them. 
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Proof 

If    "is a member of 1 "P  and  1a , then Pa is the proposition  1 1  

and represents an atom, 1 , in the Boolean algebra defined over A, 

which is isomorphic to 42 ; that is    4AP 2 . 

 

Predicate calculus also embraces rules for the use of quantifiers; universal instantiation is 

illustrated by the rule: - 

 

Pa

x Px




 

But the quantifier is eliminable in favour of a list,       1 2 3 4 ...x Px P P P P .  This rule 

reduces in the finite case of    4AP 2  to         1 2 3 4 1 2 3 4P P P P P P P P , which is a 

“mere tautology”.  The use of predicates in the finite calculus of predicates (a form of formal 

analytic logic) is nothing more than a façon de parler, or at best a tool of convenience, and 

that there are no true predicates in this calculus.  Surprisingly, the same principle extends to 

the infinite case as well, provided that we allow for infinite lists and infinite meets and joins, 

which we do when we claim that an infinite lattice is complete.  [Defined 4.9.4]  Even if the 

lattice is not complete in the sense that every infinite collection of lattice points has both a 

join and meet, it may still allow for some infinite joins and meets.  Thus, in the logic that is 

built over the lattice there may be quantifiers, but in the lattice there are no distinct points 

that correspond to quantifiers that do not represent points already existing in the lattice.  

Quantifiers serve to distinguish, that is mark out and identify, certain points in the lattice; they 

do not create them. 

 In scaling up from a finite to an infinite lattice we have stepped from a model of a 

lattice in which there finite meets and joins to one in which there exist at least some infinite 

meets and joins, if not all of them, as the lattice may be incomplete.   

 1.2  On the nature of a true predicate logic 
 

In Aristotle’s logic subject and predicate are said to be “terms”, but the distinction between 

them is founded on ontology and not grammar: a subject is a term denoting an individual, and 

a predicate is a term denoting a universal.  Thus, the Aristotlean subject/predicate distinction 

cannot be divorced from a theory of judgement, and all the mentalistic “baggage” that could 

attach itself to such a theory; it is a form of the logic of intensions not extensions.  This 

constitutes a true predicate logic.2  Modern formal predicate calculus is not a true predicate 

logic.   

                                                           
2 For confirmation of this historical perspective consider the following observations made by G.H.R. 

Parkinson in his introduction to the logic of Leibniz: “He [Leibniz] states the subject/predicate distinction.  

He next proposes, as a task for inventive logic, the problem of determining all the possible predicates of 

any given subject, and all the possible subjects of any given predicate.”  A term is either a subject or 

predicate.  “He is clearly using ‘term’ in the traditional sense of the subject or predicate of a proposition, 

and the fact that he speaks in this context of an alphabet of human thoughts indicates that he regards 
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Consider atoms of a finite Boolean lattice – taking 42  as our paradigm.  These atoms 

arise from the conception of a division of space   0,1  into disjoint mutually exclusive parts.   

 

0 1

1 2 3 4

{1} {2} {3} {4}  

 

The atoms are propositions that name these partitions.  In the predicate calculus our focus of 

interest has already shifted to natural numbers, sets and the continuum (points).  The atoms 

are now points in space.  Thus, dimension makes its appearance, and we require variables to 

distinguish coordinates in some space k  or k .  The expression x y  when it appears in 

algebra affirms that the first coordinate x is numerically equal to the second coordinate y.  It 

is a statement about vectors.  Thus, x y , or perhaps more perspicuously, 1 2x x , makes its 

appearance when it is implicit that the domain is some 2- or n-dimensional space, and the 

individuals are pairs or n-tuples.  That is why x y  defines a diagonal set as a subspace of the 

universe of discourse, which is implicitly the Cartesian product X X  of some base set X.  

Likewise,  x Px  is related to a projection function from a space nX  onto its (first) coordinate 

axis.  The atoms of 2  correspond to points of ordered pairs, and we can enumerate them: - 

           0,0 , 0,1 , 0,2 , ... , 1,0 , 1,1 , 1,2 , ...  

By diagonalisation these may be combined into a single list.  Predicates may be represented as 

partitions of this 2  space (which is the domain of discourse), thus: - 

                 0,0 , 0,1 , 0,2 , ... , 1,0 , 1,1 , 1,2 , ...  

The atomic propositions take the form:     0,0 0,0 .3  This can be abbreviated to just 

  0,0 , which also serves as the name of the atom.  The predicate x y  or 

    , :x y x y x y  is the diagonal set,       0,0 , 1,1 , 2,2 , ...   [See 2.5 below].   An example of 

                                                                                                                                                                      
such terms as concepts.  The analysis, then, is one of concepts; stated roughly, Leibniz’s view is that every 

concept is either ultimate and indefinable, or is composed of such concepts.  The indefinable concepts are 

called by Leibniz ‘first terms’, and a list of these constitutes what he was later to call the ‘alphabet of 

human thoughts’, for derivative concepts are formed from first terms in much the same way as words are 

formed from the letters of the alphabet.  Leibniz proposes to regard the first terms as constituting the 

first of a series of classes; the second class of the series consists of the first terms arranged in groups of 

two; the third class, of the first terms arranged in groups of three; and so on.” (Parkinson [1966] xvii.) 

Parkinson goes on to state that in the De Arte Combinatoria Leibniz “follows Hobbes by regarding 

predication in terms of addition or subtraction, or he follows Aristotle and scholastic tradition by 

speaking of the mind ‘compounding and dividing’.”  The identity theory is a more ‘mature’ concept where 

“Leibniz’s view that to assert a proposition is to say that once concept is included in another – that is, his 

‘intensional’ view of the proposition.” (Parkinson [1966] xiv.)  

3 Atoms are asserted contingently, so the expression     0,0 0,0  means  0,0  is contingently given: or 

“Consider a model in which  0,0  is given.”   
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a relation is,              2, , : 0,0 , 1,1 , 2,4 , ...R x y x y y x .  The predicate,       2Py x y x  

enumerates the image set of this relation:         2 0,1,4,9,16, ...Py x y x , so it is the 

projection of the relation R onto the y-axis. [See 2.2 below]  

1.3  Quantifiers 
 

Now we have to interpret quantifiers.  For a finite join,      1 2 ... nx Px P P P , corresponds 

to a finite set.  In an infinite lattice a predicate may correspond to an infinite set.  No predicate 

(join) is necessary, except 1.  The impossible predicate is 0. 

Existential quantifiers pick out points in a lattice, given contingently, and hence also 

their filters.  The “natural” scope of the existential quantifier in the arbitrary statement 

 x Px  is that which is may be contingently asserted (possibility).  By contrast the scope of 

the universal quantifier in  x Px  is that which is necessary.  If  x Px  is true, then P is a 

necessary predicate whose scope is the whole set of atoms (the base set).  In other words 

 x Px  is a synonym of   x x x  and is a name of 1.  Strictly,  x Px  cannot be 

asserted contingently; if it is asserted at all, it must be asserted as a necessary proposition, 

that is, as a name of 1.    x x x  is necessarily false, and is a name of 0. 

1.4  Rule for generalization 
The rule for the introduction of the universal quantifier4 is: - 

 


x x




 

where   is any well-formed formula of the logic. 

 

This rule is partly responsible for the illusion that analytic logic is not vacuous; it appears to 

allow for the deduction of a universal generality  x x  from finite information.  One only 

has to examine the rule to see that this must be a false impression.  The statement   could 

only be true if   was a name of 1, since it is affirmed categorically, that is, without premise.  

So   x x 1 , and the inference reduces to 1 1 .  In practice, “substantive” uses of 

generalization appear in results such as,                x Fx Gx x Fx x Gx , and are 

“useful” in the manner in which tautologies in general are useful.  Strictly speaking, there is no 

contingent meaning to  x Px  and all instances of this formula are disguised names of 1.   

 1.5  Example 

By the principle of dilution, the inference         x Px x Fx Gx   should be 

interpreted as: - 

                                                           
4 For example, see Mendelson [1979] p. 60. 
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   
   
   
   
 

 

    

     

   

 



1 1 2

1 1 2

1 1

...

...

x Fx Gx

x P x P x P x

x P x P x P x

x P x P x

x 1

1













 

 

Here also I will not allow  x x  unless it quantifies over an infinite domain.  Then: -  

     1 2 3 ...x Px Pa Pa Pa  

where the list on the right-hand side is infinite.  

1.6  Lattice inferences involving quantifiers 
 

It would be useful to interpret in terms of the lattice the meaning of the valid inferences: - 

 

           
           
           
           

    

    

    

    

But not conversely

But not conversely

x Fx Gx x Fx x Gx

x Fx x Gx x Fx Gx

x Fx Gx x Fx x Gx

x Fx Gx x Fx x Gx









 

 

Firstly I observe that all the inferences involving only the universal quantifier are strictly 

pseudo-inferences lying in the pseudo-lattice of 1.  This follows from the observation that 

 x Fx  is strictly a name of 1, so any joins and meets of propositions of this type belong not 

to the lattice of joins (and meets) of atoms, but to the pseudo-lattice of 1.  The inferences 

 

           
           
    

     But not conversely

x Fx Gx x Fx x Gx

x Fx x Gx x Fx Gx




 

 

belong to the pseudo-lattice, whereas the inferences 

 

           
           
    

     But not conversely

x Fx Gx x Fx x Gx

x Fx Gx x Fx x Gx




 

 

belong to the proper lattice.  

 Chap. 5 ] THE CALCULUS OF “PREDICATES” [ Sec. 1 



© Peter Fekete] 104 [ 06 Oct. 2011 

 

 

   x Fx Gx  )        x Fx x Gx)   )

 x Gx)

 x Gx)

 x Fx)

 x Fx)

  x Fx  Gx)

    x Fx x Gx)  )

    x Fx x Gx)  )

  x Fx  Gx)

Consequence in the
pseudo-lattice of 1

1  

 

1.7  Logic of “identity” – Equations 
 

The introduction of = into the predicate calculus concerns relations on the ideals of the lattice. 

Each ideal corresponds to an equation.  First, an illustration: - 

1.8  Example 

In the lattice 42 : - 

 

{1} {2} {3} {4}

{3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

1 = {1,2,3,4}

{1,2} {1,3} {2,3} {2,4}
p q pqp qº

p q  p q p qp q

p q
p q  p q  p q

p qº

0
 

let  

     3,4 1,2p x y t ,      2,4 1,3q y z t  and     2,3 1,4x z t . 

Then  
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            2,3,4 1p q x y y z t  and       x y y z x z�  corresponds 

to the inference  p q p q .  This is equivalent to the relation that the filter 

generated by the node p q  is contained as a subset in the filter generated by 

the node p q . 

1.9 (+)  Proposition 
Equation logic is the logic of filters. 

 Proof 

In disjunctive normal form a node in a lattice is a disjunct of 

propositions.  Assume that to each node p there is a conjunction  

  
1

...
ki ip a  

where k is an ordinal and each i  is an atom.  We need to show that 

there is a relation on the set of all filters that is an equivalence relation 

and hence justifies the introduction of the equality symbol into the 

logic.  Reflexivity and symmetry will be the easy case.  It is the transitive 

relation that is needed:     x y y z x z . Putting  

   
   

 

 





         

         

1 1

1 1

... ...

... ...

i i i i

j j j j

p x y a t a t a

q y z a t a t a
 

Then         
          

1 1
... ...i i j jp q t a t a t a t a .  The statement 

x z  will be equivalent to a sub-conjunction of this list.  To an equation 

x y  there corresponds a subset of the power set of the universe of 

discourse, which also corresponds to a node in the lattice.  Denote the 

filter generated by this node by x yF .  We have, for example: - 

       
          

          



Equation Partition Filter

:

1,2 1,2 , 1,2,3 , 1,2,4 , 1,2,3,4

x y x y F x y P V

p

 

The general relation on which equation logic is based is: - 

             F x z F x y y z  

The inclusion is strict if x y . In the preceding above ( 42 ) we have 

  x z p q  - this is based on the universe   1,2,3,4V .  In a larger 

universe the statement x z  is equivalent to an unspecified disjunctive 

normal form.  Introduction of = into the language creates a 

distinguished point in the lattice corresponding to a filter. 

   

Thus, axioms governing the = symbol are based upon an existing relation in the lattice.  The 

lattice  induces   a   relation   on   filters,   and   the  =  symbol  creates  a  convenient language 
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to describe this relation.  It maps back that relation to a relation between lattice points.  The 

relation between lattice points appears to be not a law of the lattice, but this is an appearance 

only.  To each lattice relation there corresponds an algebraic lattice law, though the 

correspondence is a function of the size of the universe and the interpretation of the equation 

in that universe: - 



  

  


      

induces 

pull back

Lattice Filters

x y

x z x y y z

p x y F

x y y x x z F F F

 

The axioms governing = do not correspond to points in the lattice – they are distinguished 

elements from the set of logical laws.  There is only one way to add the axioms.  They are not 

contingent structures but alternative descriptions of the structure of the lattice.  Adoption of 

the axioms of = are forced by the axioms of the lattice.  It is the only consistent way to extend 

the lattice to include in the language the = sign.  The relation already exists and all that is 

supplied is a name.   

 

2 Binary and n-ary relations within predicate logic 
 

When we deal with binary relations the atoms of the partition are treated as ordered pairs.  

2.1  Binary relations 
A binary relation is a subset of points from the set of ordered pairs   . 


0
1
2
3
4
5
6
7
8


0

9

1 2 3 4 5 6 7 8 9  

2.2  Existential quantifier over a relation 
 
y

0
1
2
3
4
5
6
7
8

x
0

9

1 2 3 4 5 6 7 8 9
( ) ( )x R x,y  

 

Example of a binary relation 

            , 0,2 , 1,3 , 2,4 , 3,4 , 3,5 ,...R x y  

Example of an existential quantifier over a relation. 

           , : , 0,1,2,3,4,5,7,9,...x R x y x R x y  
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The existential quantifier is equivalent to the projection of the binary relation  ,R x y  onto 

the x-axis, or 1st coordinate.  Likewise, for     ,y R x y  this is the projection onto the 2nd 

coordinate. 

2.3  Negation and universal quantifier 

             , 0,0 , 0,1 , 0,3 ,... 1,0 , 1,1 ,...R x y  

represents all those points in    not in R. 

         , 0,1,2,3,4,...x R x y  

             , ,x R x y x R x y  

2.4  Constant function 
 
 
 

y

0
1
2
3
4
5
6
7
8

x
0

9

1 2 3 4 5 6 7 8 9  

 

 

 

When we get down to fully bound relations, for example, 

                      , , , , , ...y x f x y x y f x y x y f x y  

the only possible values are 0, 1 indicating whether the relation holds or not; whether the 

expression is true or false.  A statement with a universal quantifier     ,x f x y  can only be 

true if the projection set is the entire set:           ,  is true , 1x f x y x f x y . 

2.5  Diagonal relation 
y

0
1
2
3
4
5
6
7
8

x
0

9

1 2 3 4 5 6 7 8 9  

 

        
     

 
     
         

     
       
     
     
   



 

     
  

  

      

 

  

 

, 0,2 , 1,2 , 2,2 ,...

, 0,1,2,3,... , true

0,0 , 0,1 , 0,3 ,...,
,

1,0 , 1,1 , 1,3 ,..., 3,0 , 3,1 ,...

, 0,1,2,3,4,5,... , true

, , , false

, 2 ,  true

, 0,1,3,4,5,... , true

,

f x y

x f x y

f x y

x f x y

x f x y x f x y

y f x y

y f x y

y f x y      
     
     
     
         

   

   

   

  

     

, 2 ,  false

, , false

, ,  false

, 1,  true

, , 2 , false

y f x y

y x f x y

x y f x y

x y f x y

y f x y y f x y

 

          
         
         

          
       
       
     
   







  

     

     

   

     

      

  

   

, 0,0 , 1,1 , 2,2 ,...

, 0,1,2,... ,  tr

, 0,1,2,... ,  tr

, 0,1 , 0,2 ,... 1,0 , 1,2

, 0,1,2,... ,  true

, , ,  false

, 1,  true

, ,  fals

D x y x y

x D x y x x y

y D x y x x y

D x y x y

x D x y x y

x D x y x D x y

y x D x y

x D x y

         

e

, ,  falsey x D x y
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2.6  All relation 
All points in the x,y-plane. 

     
 

   
   
     

  

  

   

 

  

, 0,1,2,... ,  true

,

, ,  false

, 1, true 

, 1,  true

x A x y

A x y

x A x y

x A x y

y x A x y

 

 

The universal quantifier has only two values – 1 = true and 0 = false.  There is a lack of 

symmetry between the two quantifiers.  The existential quantifier picks out a set within the 

domain, equivalent to a disjunction.  The universal quantifier denotes a valuation that is not 

contained within the lattice.   

2.7  Empty relation 

   ,R x y  

The only relation for which we have 

     , , falsex R x y  

2.8  n-ary relations 
 

n-ary relations are treated as product spaces, just as binary relation is a product space   ; 

the n-ary relation has n copies of the base set; the elements are n-tuples; the existential 

quantifier projects onto the ith coordinate; the members of the product spaces are n-ary 

relations which are pointsets.  The largest space is Baire space – the set of all n-ary tuples, 

 . 

 

 3 The actually infinite partition of the interval  
 

The set   0,1,2,3...  represents the set of all natural numbers.  This is a potentially infinite 

set, for we can never have done with enumerating all the natural numbers; as a collection it is 

inexhaustible.  Cantor allowed the set    0,1,2,3..  to be the actually infinite collection of all 

ordinals.  This is in accordance with the usual definition of an ordinal number that one 

encounters in set theory: Let n be an ordinal; then the ordinal successor of n is    n n n .5  

From this definition it follows for an ordinal,   0,1,2, ..., 1n n ; thus, an ordinal is a set that 

contains every ordinal that precedes it in the series of all ordinals.   It seems natural to extend 

                                                           
5 One could introduce separate notation for natural numbers and ordinals, but I do not think that would 

make the exposition here any clearer, and I rely on context to indicate which of the two is intended. 

 Chap. 5 ] THE ACTUALLY INFINITE PARTITION OF THE INTERVAL [ Sec. 3 



© Peter Fekete] 109 [ 06 Oct. 2011 

 

this definition to the infinite case, so that we have   to be the next ordinal that comes after 

all the finite ordinals though not as the successor of any of these; it is the least infinite 

ordinal.  It is a natural enough definition and fits well with the purpose that Cantor originally 

intended it for.6 

3.1   The paralogism  of formalism  
 

The Cantorian approach is the occasion for the paralogism that underpins formalism. 

[Defined, Chapter 1, Section 1 et seq.] 

 

1. Arithmetic is based on the collection   0,1,2,3... , which is a potentially infinite 

collection of natural numbers that have no upper bound.  This is equivalent to the 

Archimedean property7 that the natural numbers are not bounded above.   is a 

collection equipped with a synthetic principle of reasoning known as complete 

induction, by means of which a conclusion about the entire collection,  , is attained.  

Since this principle makes a conclusion about the whole, by this means the finite has 

been decidedly transcended; the infinite is reduced to the finite.  Our conclusion applies 

to all of  , not just a part.  In this sense, it is a conclusion about a “completed” 

infinity.  However, the completion involved in this process of inference is in no wise 

the same actual collection conceptualised in    0,1,2,3... ; we never in complete 

induction conceive of the totality of all the natural numbers, or imagine that these 

numbers have a successor.  So   is foreign to both   and complete induction. 

2. Analysis is based on the continuum, which is primarily the notion given to intuition of 

a continuous extension capable of being analysed into parts.  A division of the 

continuum into a finite number of discrete parts is an insufficient basis for science; it 

is incomplete.  Therefore, an actually infinite division of the continuum is required.8  

(It also being the case that a potentially infinite division of the continuum is 

insufficient.)  [See 3.7 et seq. below.]  This actual infinite partition of the continuum 

gives rise to the notion of     as the actually infinite collection of all ordinal numbers;  

                                                           
6 An analysis of the properties of the continuum with a view to identifying just when such and such a 

trigonometric series converges and under what conditions.  See Dauben [1979] and Bessoud [2008]. 
7 Archimedean property: If a and b are any particular integers, then there exists a positive integer n such 

that na b .  (Burton [1976] p.2)   This implies that   is not bounded above. 

8 This necessarily involves the notion of an actual infinity of parts and gives rise to certain tensions that 

manifest themselves as paradoxes, or rather problems.  The division may be thought of as taking place 

through an actual process of dividing the line and each division may be counted: 1,2,3, ...; however, it 

becomes clear to the understanding that a process that increases in tandem with the counting numbers is 

still insufficient to provide a complete system of explanation of the parts of the real line.  It is necessary 

for a complete understanding of the continuum sufficient to serve as a basis for science to attain to the 

notion of a real number corresponding to a point of the continuum .  To arrive at the collection of all real 

numbers we must conceive of a process of division that is more rapid than any process of counting by 

means of finite numbers could be.  From this arises the notion of different sizes of infinity.   
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a limit ordinal is defined to be a non-zero ordinal which is not the successor of any other 

ordinal;  is defined to be the least limit ordinal.  The difference between   and   is 

encapsulated by this theorem: - 

 3.2  Lemma 
 For   the following statements are equivalent: - 

 1.   is a limit ordinal 

 2.         1n n n  

 3. 





 sup
n

n  

 (Proof in Potter [2004] p. 181)9 

 

Thus   is the least upper bound (supremum) of all natural numbers.  Thus, if     we must 

allow the collection of all natural numbers to be bounded, contradicting the Archimedean 

property.  We must either dispense with the Archimedean property or drop the identification  

   .  The error of identifying   with   is common: - 

 

... there is a least limit ordinal, which is called   (“omega”).  The members of   

are called finite ordinals or natural numbers.  In other words, to a set theorist 

   .  (Wolf [2005] p. 83)  [See also Chapter 1, section 4 for other instances.] 

 

Not only is     a mistake, but the paralogism of formalism arises as follows: analysis of the 

continuum into actually infinite parts enables the creation of an analytic logic of the 

continuum.  Within this logic it is possible to construct a theory of chains and within this 

theory it is possible to embed an analytic variant of the principle of complete induction.  The 

paralogism is to take this analytic variant for the original principle of complete induction, 

which then makes it appear that arithmetic is a version of analytic logic.  This is an illusion.   

 I shall demonstrate that     leads to a contradiction in the theory of cardinal 

numbers in Chapter 6.  [Chap.6 /.3.9]  This will demonstrate that set theory requires    . 

 The Archimedean property is a synthetic principle of the natural numbers in its own 

right.  But it also a deductive consequence the Completeness axiom, and hence, if we eliminate 

the Archimedean property we must drop the Completeness axiom.  This is shown as follows: - 

 3.3  Analytic proof of the Archimedean property from the Completeness Axiom 
Suppose   is bounded above.  Then by the completeness axiom there exists a 

unique real number u, such that  supu .  For any number n  the number 

 1n , hence  1n u  and  1n u .  This is true for all n , hence 1u  is 

an upper bound for  .  This contradicts the uniqueness of u, so   cannot be 

bounded above. 

                                                           
9  I have slightly adapted the theorem in Potter which is for all limit ordinals.  Only   concerns us here. 
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Hence, we see that the Completeness axiom requires    .  That this is entirely correct shall 

become transparent when we consider the actual partition of the interval into   parts. 

Furthermore, when we see that the categories of the potential and actual infinite are 

two entirely distinct categories of explanation and have origins that are distinct, we see that in 

trying to subordinate the one to the other we have made a fundamental category error.  The 

potential infinite, as a separate category, has re-emerged even within set theory in the notion 

of a proper class – an infinite collection of sets that is not a set and is not bounded above.10 

Here the paralogism takes the form: (a) there is no model of set theory that is a set yet (b) all 

mathematics is set theory. 

One only has to examine the definition of the ordinal   to see that it does not 

encompass the potential infinite:   is a limit and belongs to analysis not to arithmetic.  In set 

theory we must add an axiom of infinity, that is, an axiom that permits the formation of a 

completed totality of actually infinite members; then, and only then, are we able to derive a 

species of complete induction.  As a basis for the analysis of the continuum this way of 

proceeding is appropriate; but if it gives rise to the paralogism that we have dispensed with 

synthetic reasoning altogether then the damage done far outweighs the gains.  The principle of 

complete induction is not the same as taking a limit.11 

This conclusion is also supported by the following observation: when we take a limit 

we never do attain the limit; the process of taking a limit is a façon de parler for some 

constructive process that enables us to approximate a number that we could never truly 

construct as a thing-in-itself, though we might be able to name it.  In classical, as opposed to 

constructive mathematics, we allow the notion of a limit to acquire a kind of theoretical supra-

existence, but its relation to a constructive process is never wholly lost.  On the other hand, in 

complete induction, we really do attain the bound implied by the reduction of the infinite to the 

finite that it encompasses.  In an induction we truly pass from finite information to information 

about an infinite class of objects; from any to all.  So, while induction never gives us the 

notion of an actual infinity (which does not belong to it as a category) it does give us 

knowledge of infinity.  In precisely this way infinity is a concept that we do understand and 

grasp, albeit not in the same way that we grasp anything that is finite. 

                                                           
10 I am aware of the claim that proper classes can always be eradicated formally in favour of sets, or 

definite multiplicities.  I claim that this device fails to eradicate the concept; whatever the technical 

successes of such an approach (they are exaggerated) the concept is vital to our system of explanation.  

The concept has not been eradicated, and if it were, why would proper class appear as a term in any 

(substantial) textbook of set theory whatsoever? 
11 They are conceptually related, for both are connected to the synthetic grasp that an act that is repeated 

indefinitely gives rise to the concept of a totality of all repetitions of that act.  But they are also 

conceptually distinct.  In induction the potential is completed as an inference from any to all, but not in 

the sense of adding a new number as the successor to all natural numbers.  In the taking of a limit, 

because of the synthetic connection to the continuum, the limit is conceived as being one member of a 

completed, actual infinite totally of members.   
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 In a process of enumeration infinity is never given, and it is another aspect of the 

fundamental paralogism of formalism to take enumeration for infinity, either potential or 

actual.  I can never tell from a mere sequence of numbers that knowledge about the entire 

sequence or a potentially infinite collection is encompassed by it.  From 2, 4, 6, 8, ... what 

follows?  The dots convey nothing unless I have already grasped the concept of their 

continuation in accordance with a rule, and without that rule no examination of the sequence 

will ever produce it.  It is also insufficient to distinguish between whether the potential or 

actual infinity is intended.  It is a fundamental error to presume that enumeration of lists is 

sufficient to explain anything.   

3.4  Infinite partitions 
 

The set of natural numbers,  , is unbounded and the concept of infinity encompassed by this 

set is rightly denoted  .  The set of finite ordinal numbers may be regarded as bounded 

above by means of a formal definition, and this upper bound is denoted  , which is defined 

to be a limit ordinal and that ordinal which follows all the finite ordinals in the succession of all 

ordinals.  By this means we encompass the idea of an actually completed totality of all finite 

ordinals and hence of all natural numbers that may be placed in correspondence with those 

finite ordinals.  The structure,  , owes its origin to the analysis of the continuum by means of 

an infinite partition.  The continuum may be analysed in at least two different ways: - 

 

1. By division into actually   parts. 

2. By division into actually more than   parts. 

 

By this second division I encompass the division of the real line into points and the correlation 

of those points with real numbers.12   

My purpose here is to explore the analytic logic of the division of the real line into   

parts.  Such a division could never suffice to produce a continuum; it produces a scaffold, or 

skeleton [Chap. 4, Sec. 11.3], of points of the continuum rather than the continuum itself.  

Upon this skeleton a Boolean lattice can be constructed.  This is the structure 

      0,1P 2 , which is known as the Cantor set.  Any structure isomorphic to the Cantor 

set is known as a Cantor space.  Since all Cantor spaces are identical up to isomorphism, it is 

possible to talk of only one Cantor space.  Cantor space is the Boolean lattice/algebra of which 

  is the skeleton.  It can be shown that it is a complete, atomic lattice. 

                                                           
12 Following Cantor’s it has been customary to equate this number of parts with the power set of  , 

denoted  P .  Each part, called a point, is said to correlate to a decimal number with infinite digits, 

which may or may not repeat.  The cardinality of the continuum is denoted c.  It is a theorem that  02c  

where  0 .  I regard it as an open question as to whether such a division is sufficient to embrace or 

define the concept of continuity; in a formal sense it may do, but there are unresolved tensions involved 

with this definition 
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 3.5  About zero 

I shall include 0 in   by definition; that is,   0,1,2,3, ...  where 0,1,2,3, ... are 

natural numbers.   

 

Formalists must deny that the succession of natural numbers,  0,1,2,3, ... constitutes a primary 

category of understanding, and claim that all that can be known them is encompassed by the 

theory of ordinals and their position in a progression that could be mechanically generated.  It 

is usual to adopt the von Neumann definition of ordinals: - 

 

   
   

 

 

    

   

 

0

1 0

2 1 0,1

...

0,1, ... 1n n

 

 

This can create difficulties when discussing the Boolean lattice constructed over  , for  0 , 

denoting the empty set, is also the zero of the lattice.  I denote the zero of the lattice by 0, 

that is, using bold face type.  The division of the line produces parts that correspond to 

singleton sets:      0 , 1 , 2 , ...  ; by the definition of the ordinal 1, we see that      1 0  

represents one of these partitions.  The ordinals in general do not stand for these partitions.  

The ordinals, 0,1,2,3,... in general represent the “content” of each partition, as in  1 1 , 

whereas the singleton set itself represents the partition.  The partition may also be 

represented in other ways, for example, by singleton sets,      , , , ...a b c  or by singletons 

containing successive primes:      2 , 3 , 5 , ...  .  Although the intention is to build a theory of 

arithmetic within the analytic logic    0,12  it should be noted at the outset that the 

concept of order is not instrumental in the construction of this lattice, so if the lattice 

embraces the order of inherent in the succession of natural numbers this must emerge in 

some other way. 

 3.6 (+)  Summary 

  0,1,2, ...  is unbounded above.  All sets are “determinate multiplicities” 

[Chap.2, Sec.1.3.1].  They are determined by their extensions.  Although it is 

common to treat   as a set, it is not strictly a determinate multiplicity.  It does 

not appear in set theory.  It is customary to equate   - this is a mistake.   

1.1   is the unbounded collection of all natural numbers;   is the least 

infinite ordinal, which is a set.   

1.2   is potentially infinite;   is actually infinite. 
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1.3 Every element of   is unbounded above; every element of   is 

bounded above, by  , which is placed in succession after all these 

elements. 

 

Despite the common mistake, illustrated by the quotation from Wolf above, of equating 

   , some texts of set theory make no reference whatsoever to  .  For example,   makes 

no appearance in Levy [2002].13   

3.7  One-point compactification 
 

It is at this point, when we must consider how to divide the interval   0,1  into an actually 

infinite number of partitions equinumerous to  , that the tangible distinction between the 

potentially infinite   and the actually infinite   makes a difference of momentous 

significance.  The collection   is literally incapable of dividing the interval   0,1  into an 

infinite number of segments for the reason that it represents a potential infinity.  If we start 

numbering the partitions we will never have done, because   is unbounded above.    is a 

locally compact [Chap.2/2.9.6] but not globally compact set [Chap.2/2.9.5].    0,1  is bounded.  

A partition of   0,1  by   segments is impossible because we are trying to divide the 

unbounded into the bounded.  

 In case the reader concludes that I am inventing some new issue and embarking upon 

a paralogism of my own, let me immediately state that this observation is actually standard 

theory, since it is universally allowed that the partition of   0,1  requires a 1-point 

compactification.  The half-open interval 0,1  is locally compact but not closed or bounded 

above.  In order to close it, we need to adjoin to it the neighbourhood of the point 1, here 

represented by  1 .  That is, we write,        0,1 0,1 1 .  From this there follows the Heine-

Borel theorem that the interval   0,1  is compact.   The Heine-Borel theorem is, in turn, just one 

of many equivalent formulations of the Completeness Axiom [Chap.2 / Sec. 2.10].  That is to 

say, the very possibility of compactifying the half-open interval 0,1  is equivalent to 

completing it and rests on a basis that, but for formalism, one would immediately conclude 

was a synthetic act of imagination.  The interval   0,1  is the sub-manifold upon which we are 

currently attempting to define a scaffold (skeleton) or partition of actually   parts.  A 

subdivision of 0,1  would correspond nicely to a partition by   parts precisely because the 

sub-manifold is open and unbounded just as   is unbounded.  Thus we can clearly “attach” 

  to 0,1  using the famous method of Zeno in the paradox of the division of the line.14  That 

                                                           
13 There is no reference to   in Levy’s index of notation. (Levy [2002] p. 378). 

14 For a description of Zeno’s paradox of the Dichotomy and Aristotle’s solution to this, see Barnes [1979] 

Chapter XIII. 
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is, by halving and having the interval 0,1  ad infinitum.  So manifestly   is insufficient to 

partition   0,1 .  These are well-known results: - 

3.8  Result 
Every discrete space is locally compact, but not compact if infinite.  (Bourbaki 

[1989a] p. 90) 

3.6  Corollary 
  is locally compact but not compact. 

 

The standard partition may be found in any appropriate text.  I take it from Davey and 

Priestley [1990] (p.197): - 

3.9  One-point compactification of a countably discrete space 

Let       . 

Let  U . 

Let T be the topology on   given by 




   

  if  
 and  is finite

U
U T

U U
 

This can be shown to be a topology.  (See Givant and Halmos [2009]).  A subset 

 V  is clopen (both closed and open) iff V and   V  are in T.  The clopen 

sets of   are the finite sets not containing   and their complements.  It can 

be shown that   is totally disconnected.15 

                                                           
15 Givant and Halmos write: “A less trivial collection of examples consists of the one-point 

compactifications of infinite discrete spaces.  Explicitly, suppose a set X with a distinguished point 0x  is 

topologized as follows: a subset of X that does not contain the point  0x  is always open, and a subset 

that contains 0x  is open if and only if it is cofinite.  It is easy to verify that the space X so defined is 

Boolean.  For instance, a subset of X is clopen if and only if it is either a finite subset (of X) that does not 

contain  0x  or else a cofinite subset that contains 0x ; indeed, a subset and its complement are both 

open just in case one of them (the one that contains 0x ) is cofinite.  The clopen sets form a base for the 

topology because every open set that contains 0x  is clopen, while every open set that does not cotnain 0x  

is the union of its finite subsets.” (Givant and Halmos [2009] p. 301, where the discussion continues.)  We 

also have Alexandroff’s Theorem: Let X be a locally compact space.  (1) Then there exists a compact space 

X  and a homeomorphism f of X onto the complement of a point 0x X .  (2) If 
X  is another compact 

space such that there is a homeomorphism 1f  of X onto the complement of a point in 
X , then there is a 

unique homeomorphism g of X  onto 
X  such that  1f g f . [Source is Bourbaki [1989a] p. 92] 
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Before proceeding further, we should examine precisely why this definition results in a 

compactification of  .  This derives from the definition of the topology on  . 

 

{   }¥{1}{0} {2} {3}

U¥¥  U¥  

 

The topology is defined in such a way that, if an open set, U , covers    then what remains, 

 U , must be finite; hence every open cover has a finite subcover.   

If we now pair-off elements of   with elements of   we obtain a one-one 

correspondence with   in correspondence with the final partition,  .  However, we should 

be careful here as well.  Although   and   are equinumerous it would be a mistake to 

conclude that they represent the same structure in regard to the partition of the interval   0,1  

into actually   parts.  The 1-point compactification   generates the following image: - 

 

0 1 2 n n + 1. . . . . .3



¥

0 1

{     }¥  

 

But we must take another view of this partition of   0,1  if we wish to use it as a basis of a 

formal analytic logic.  The reason is that a formal analytic logic constructs a lattice over a 

partition (its skeleton) but in such a way that there is no regard as to the order relations of the 

partitions.  The dilution inference   i i j  where  ,i j  are atomic propositions 

corresponding to atoms     , ,i j i j  makes no reference to order whatsoever: the inference 

does not depend on i  coming before  j .  (In fact, we insist upon it when we make 

     i j j i .)  Hence, we need yet a third notion of the infinite, to denote a potentially 

infinite collection of unordered sets – a potentially infinite antichain [See 4 / 11.1].  I shall 

denote this collection by  ;   is   without any order relation upon it.  It is what you would 

have if you did not have complete induction defined on  , which is a potentially infinite 

chain. 
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3.10 (+)  Summary 
   Actually infinite chain of ordinals. 

   Potentially infinite chain of natural numbers. 

   Potentially infinite antichain of unordered elements. 

 

The status of   and   as sets is disputable.  According to the popular theory that every 

mathematical entity is a set, they must either be sets or just not exist.  Levy [2002] does not 

include   in his text at all, which suggests that he denies that it exists as a separate entity 

from  .  However, we can see that the one-point compactification of   makes no sense at all 

if   does not exist and the existence of  as distinct from   is implicit in the entire theory 

of Boolean lattices.  So there is the question: should we identify   with  ?  The answer is 

that strictly speaking, as intensions, we have as distinct concepts: - 

 3.11 (+)  Distinct variants of the partition of the interval 

1.           0,1,2, ... ,  is the one-point compactification of   and 

a model of the actually infinite partition of the interval   0,1 . 

2.   is the least limit ordinal – an actually infinite collection of all finite 

ordinals:    0,1,2,3, ... .  There is no   in this set.16 

3.          0,1,2, ... ,  is the partition of the interval   0,1  in which 

  represents an antichain.  Over this partition we construct a Boolean 

lattice in which every singleton set is 1 unit in the metric from the 0 of 

the lattice. 

 

All of these partitions are countably infinite and equinumerous to  .  Here I shall adopt the 

view that it is always a mistake to identify    ; however, for reasons that shall become 

apparent below [See 3.18 and following] it shall emerge that   and   are different 

descriptions of the same underlying structure, so we shall allow    , subject to caveats.  By 

the same token, the Boolean algebra that we are interested in is strictly 2 , but it is 

isomorphic to the Cantor set, hence is the Cantor space, and we shall allow,    2 2 2 , 

also subject to caveats.  We shall use the canonical 2  for the Cantor set, which is the main 

structure under scrutiny in this inquiry, at least, so far as the mathematics is concerned. 

The partition of   0,1  into a potentially infinite antichain followed by a point at 

infinity,   , may be pictured thus: - 

                                                           
16 The distinctions between  ,  and  raise the question of non-standard models of arithmetic in 

which we see additional elements tagged onto the set   and making the resultant model non-categorical 

for  .  This relates to  -consistency.  For a description of non-standard models of arithmetic, see Boolos 

and Jeffrey [1980] Chapter 17. 
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This now partitions the line into atoms, which are labelled      0 , 1 , 2 , ...  followed by   .  

The labels are for the purpose of identifying different segments of the interval – separating 

them.  It is essential that the collection,      0 , 1 , 2 , ... , be treated as an unordered one, since 

if it is ordered then it becomes a chain and not an antichain and the lattice generated by it is 

also a chain and not a Boolean lattice.  I have also labelled     .  We observe that since 

     0,1  we have    - they are mutual complements in the interval.  Hence, 

      , 0,1 2 . Observe also:            0,1,2,3, ... 0,1,2,3, ...,  as an unordered 

antichain.    is intrinsically unordered but it may be well-ordered extrinsically by placing it 

into one-one correspondence with elements of  .  However, this assumes the well-ordering 

principle, which is equivalent to the Axiom of Choice: - 

 3.12  Axiom of choice 

To any nonempty set S who elements are nonempty sets S  there exists a 

function 





 :
S S

f S S  such that       for all  f S S S S .  The function is 

called the choice function. 

3.13   Definition, well-ordered 

Let  ,X  be a totally ordered set.  Then X is said to be well ordered if and only 

if every non-empty subset Y of X contains a minimal element; that is, there 

exists an element y Y  such that for all x X , y x .  This element y is said to 

be the least element of Y. 

3.14  Well-ordering principle 
Every set can be well-ordered. 

3.15  Zorn’s lemma 
Let X be a partially ordered set in which every chain (i.e totally ordered subset) 

has an upper bound, then X possesses a maximal element. 

3.116 Hausdorff maximality principle 

Let  ,X  be a partially ordered set, and let T be the set of all totally ordered 

subsets of X.  Suppose that T is partially ordered by inclusion,  .  Then  ,T  

has a maximal element. 
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3.17  Result 
The following four axioms are equivalent. 

1. Axiom of choice 

2. Zorn’s lemma 

3. Hausdorff maximality principle 

4. Well-ordering principle 

 

 

 

 

 

 

 

Another equivalence to the Axiom of Choice is: - 

 3.18  Rubin’s proposition 
(Levy [2002] p. 164 – original result by H. Rubin 1960) The axiom of choice is 

equivalent to the statement “The power set of every ordinal is well-orderable”. 

 

Application of the Axiom of Choice transforms   into a well-ordered set and transforms the 

partition    into a set isomorphic to  . 

          Axiom of Choice Axiom of Choice
Transformation Transformation

 

3.19  The relationship of the Axiom of Choice to the Axiom of Completeness 
 

In technical textbooks of set theory I see no formal treatment of the Axiom of Completeness.  

For example, Levy [2002] does not mention it.  However, the Completeness Axiom is implicit 

everywhere and an equivalent to it is needed whenever a recursive finite process needs to be 

completed, just on analogy with the Dedekind cut.  Whenever this is required it is always the 

Axiom of Choice that is invoked within the context of ZF theory as a whole, which already has 

the Axiom of Infinity.  But the Axiom of Infinity is not enough to supply completeness 

arguments.  Hence, I conjecture that the Completeness Axiom is expressed in ZFC by the 

combination of the Axiom of Infinity with the Axiom of Choice.   To support this view 

consider the following remark from Givant and Halmos [2009]: - 

 

There is a close connection between complete ideals and the “cuts” that play a 

crucial role in Dedekind’s classical construction of the real numbers from the 

rational numbers. (Givant and Halmos [2009] p.206) 

 

The complete ideals that they discuss can only be established on the basis of the Axiom of 

Choice.  They are the subject of the mathematical parts of this paper. 
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This result, which is standard in set theory, is constructed on the implicit assumption that     and 

that there is no distinction between the potential and actual infinite.  If, indeed,    , these 

equivalences will have to be revisited.  I conjecture that there are two collections of equivalences: one 

for potential infinities that do not have maximal elements, and another for actual infinities that do. 
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 3.20  The relationship of the Axiom of Choice to complete induction 
 

Furthermore, the Axiom of Infinity provides a principle of induction on chains in set theory – 

which goes by the apparently “strong” title of “transfinite induction”.  But since not all sets 

are known to be chains, the Axiom of Infinity must be supplemented by the statement that all 

sets can be well-ordered, in other words, that all sets are chains, which is supplied by the 

Axiom of Choice.  Hence, we see that the Axiom of Choice is equivalent to complete induction 

on actually infinite sets and is the analogue in set theory to the principle of complete 

induction on potentially infinite sets in arithmetic.  We see that in set theory the Axiom of 

Completeness follows from the presence of an Axiom of Complete Induction on actually 

infinite sets, which I propose should be the correct description of the Axiom of Choice.  To 

support this conclusion consider the following quotation from Levy [2002]: - 

 

Zorn’s Lemma eliminates Recursion.  In applications Zorn’s lemma often 

replaces the sue of definition by recursion of a function H where one proceeds 

as long as some condition is met ... in situations where at the recursion step one 

may have to chose  H  as an arbitrary member of some set. 

 

Definition by recursion is an expression of the inductive argument.  So here we see the Axiom 

of Choice taking the place and doing the work of complete induction within set theory. 

 

3.22 (+)  Result 

The definition of the topology T on   [3.5 above] makes an implicit use of the 

Axiom of Choice [3.7 above].   

Proof 

The construction: - 

 

   and  is finite  is open in U U U T  

 

requires that we are able to pick out the element   from     0,1,2,3, ... ,  

which is not possible unless we have a choice function, or equivalently, unless 

  is an well-ordered set.  The collection      is primarily an unordered 

anti-chain.  It requires the Axiom of Choice to give it an alternative description 

as an ordered chain. 

 

We shall see below [Chapter 6, Section 1 et seq.] that the topology   ,T  induces a compact 

topology on the Cantor set.  That the Cantor set is compact is equivalent to Tychanoff’s 

theorem [6.1.3],  which is itself derived from the Axiom of Choice.  Hence, compactness of    
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must assume a principle at least equivalent in deductive strength to Tychanoff’s theorem, and 

the above proof demonstrates this. 

3.23  The analytic logic of the actually infinite partition 
 

The construction of the analytic logic of actually   parts takes place in two “conceptually” 

distinct stages.  Firstly, take an unordered partition: - 

           0,1,2,3, ... 0,1,2,3, ...,  

and from this generate the lattice 2 ; then “after the fact” we apply the Axiom of Choice to 

determine that there is an exogenous order relation on the skeleton [Chap. 4, Sec. 11.3], that 

also enables us to see the element   as last in the succession of all the other elements 

contained in   which is now identified with  .  Implicit in all the process is the assumption 

that   and   are sets.  If they are not sets then they cannot be well-ordered.  We also 

conclude that   and   are the same set but under different descriptions.  This is what the 

Axiom of Choice does in general – it changes the description of a set.  Another way of 

interpreting this is that   is an ordered set (under successor) but in order to construct the 

lattice over it, we forget its chain structure, and so arrive at an unstructured antichain, 

    .  Once we have built the lattice over this, we then remember its chain structure and 

impose that in some way on the lattice, after the fact. 

 This is not exactly “set theory” in the “classical” sense, so I must stress that all I am 

doing here is uncovering the principles behind one-point compactification, which has already 

been introduced into the literature and which clearly distinguishes between   on the one 

hand and   on the other.  The other point is, for the purposes of formal analytic logic, to 

keep a clear separation between the antichain properties of the Boolean lattice and the chain 

properties of  . 

 

{1}

1 2 . . .3



¥

0 1

{0} {2} {3} {   }¥

0

{   }¥

 

 

If   is a set, then the power set operation may be defined upon it.  Suppose the elements of 

  are numbers whose internal properties are remembered (for example, their prime 

factorisations) but whose external succession in a chain is temporarily forgotten.  Then  P  

is the set of all finite subsets of natural numbers,  n .   Denote  this  set  by     P ; this 
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shall be shown to represent the maximal ideal of all finite subsets of  .  [Chapter 6, section 2 

et seq.] 

 As this introduction of the power set operation represents another conceptual step 

forward, I should dwell upon it further.  The power set operation is defined on  , and we see 

        P P 2  where 2  denotes cardinal exponentiation. (This is a major theorem of 

Cantor allowing the usual identification of real numbers with their decimal expansions.)  

Under the (false) identification of     we obtain    P 2 .  Now if we allow    , and also 

allow   to be a set, then we have    P P .  We have  P  as a proper subset of 

      P P 2 .  Since   is a potentially infinite unbounded collection we cannot obtain a 

collection of real numbers by taking the power set upon it; the real numbers are generated by 

the actually infinite partition of the interval,  .  Hence we have: - 

 3.24 (+)  The power set operation on potentially and actually infinite collections 

 1.        P P 2  

 2.      P P  

 

4 Atoms 
 

Intuitively, in any lattice an atom is an element of the lattice that is 1 unit of measure away 

from the 0 element.  An atom is said to “cover” the 0. [See 4.5.3]  Halmos [1963] defines an 

atom of a Boolean algebra to be an element that has no non-trivial proper subelements.  All 

finite lattices must be atomic, because of the discrete nature of the partition of the underlying 

space. 

4.2  Definition, atomic 
A Boolean algebra is said to be atomic, iff, for every non-zero element x of the 

algebra, there is some atom   such that   x . 

4.3  Definition, non-atomic 
A Boolean algebra is said to be non-atomic if it has no atoms. 

 

Lattices are built over partials orders.   

4.4  Definition, dominates 
If in a partial order we have the relation x y  then we say that x lies below y, 

and y dominates x.   

 

Using this term dominates, we may give an equivalent definition of an atomic lattice. 
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4.5  Definition, atomic algebra 
A Boolean algebra is said to be atomic if every non-zero element dominates at 

least one atom. 

 

It is remarked by Givant and Halmos [2009]  “that these two concepts are not just the 

negations of one another.”  To say that an algebra is “non-atomic” is not the same as saying 

that it has no atoms.  Broadly speaking a Boolean algebra can fail to be atomic in two ways: - 

 

1. It can have no atoms at all.  This occurs in the case of the interval algebra. [6 / 2.7 and 

5.12 below] 

2. It can have notional atoms [See section 5.8 below, and following] but not all of them. 

 

The term non-atomic refers to the first case, and the term atomic means that the algebra has 

enough atoms so that every element dominates at least one atom.   

4.6  Lemma 
The following conditions on an element q in a Boolean algebra are equivalent: - 

1. q is an atom. 

2. For every element p, either q p  or   0q p , but not both. 

3. For every element p, either q p  or q p , but not both. 

4.  0q , and if q is below a join p r , then q p  or q r . 

5.  0q , and if q is below the supremum of a family  ip , then q is 

below ip  for some i.   

(See Givant and Halmos [2009] for proofs.) 

4.7  Criterion, non-atomic 
A Boolean algebra B is non-atomic if for all b B  there exist an element 

 0,a a B  such that  a b a ; alternatively, such that   0a b . (Komjáth and 

Totik [2000]) 

4.8  Lemma 
In an atomic algebra every element is the supremum of the atoms it 

dominates.  (See Givant and Halmos [2009] for proof.)  

4.9  Lemma 
If an element p in a Boolean algebra is the supremum of a set of atoms E, then 

E is the set of all atoms below p.  (Komjáth and Totik [2000] p. 11, qn. 34) 

 

Let us recall the definition of a complete lattice. 
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4.10  Definition, join, meet of a subset 
Let A be a subset of a Boolean algebra B.  If the supremum of A exists it is 

denoted 


x A

x  and is called the join of A.  If the infimum of A exists it is denoted 



x A

x  and is called the meet of A. 

4.11  Definition, complete Boolean algebra 

A Boolean algebra B is said to be complete if and only if 


x A

x  and 


x A

x  exist for 

all subsets A of B.   

 

Any atomic lattice must also be complete, and we have already proven this for the finite 

case. 

 4.12  Definition, ring of sets, field of sets 
A ring of sets is a family   of subsets of a set I which contains with any two 

sets S and T also their (set-theoretic) intersection S T  and union S T .  A 

field of sets is a ring of sets which contains with any S also its set-complement 

S .  (Birkhoff [1940]) 

4.13  Definition, complete field of sets 
A complete field of sets is a field of sets such that, for any subset A of the field, 

the union and intersection of the sets in A are also in the field. 

 

It is essential to distinguish a field of sets from the power set of a set X.  Certainly, if X is a 

non-empty set then  XP  is an atomic, complete field of sets, but the converse does not apply.  

In other words, there can be a complete field of sets that is not a power set.   

 4.14  Example 

In 42  the collection,       , 1,2 , 3,4 , 1,2,3,4  is a complete field of sets that is not the 

power set of some subset of   1,2,3,4X . 

 

This field is also atomic, with atoms   1 1,2  and   2 3,4 .  This illustrates the result that 

any complete field of sets is atomic. 

4.15  Result 
A complete field of sets is a complete Boolean algebra wherein  




 
x A

x A

x x  and 




 
x A

x A

x x . 

4.16  Example 
A singleton in a field of sets is an atom. 
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4.17  Result 
Any complete field of sets F is atomic 

 Proof 

Let A be any non-empty set belonging to F and let 0x A .  Let 

 0subsets of  containing H F x .  By completeness H F .  To show 

that H is an atom: let W H  and W F .  Then either (1) 

0  impliesx W  H W ,  so H W ; or (2)  0x W  implies 

  0x H W F .  Then  H H W  implies  W . 

4.18  Result 

Let A be the set of atoms of a Boolean algebra B.  Then B is atomic iff 


 1
x A

x . 

 Proof 

 I. Forward derivation.  If B is atomic then 


 1
x A

x . 

II. Reverse derivation.  Let 


 1
x A

x .  Let  0y B .  We have to 

show that there exists an atom  ,b y b B .  Suppose not.  Then 

let x be an atom.  Then   0x y .  This mplies  


 
x A

x y 0 .  

But  
 

       1
x A x A

x y y x y y .  Hence,  0y  contradicting 

 0y . 

 

5 The atomless Boolean algebra of statement bundles 
 

The Boolean algebra of statement bundles was defined in Chapter 4 section 7, where it was 

called the Tarski-Lindenbaum algebra.  Here we now show that it is atomless. 

5.1  Result 

Every field of subsets  XP  of some non-empty set X is complete. [defined 4.11] 

Proof 




 
x A

x A

x x  and 




 
x A

x A

x x .   

By 4.15 above  XP  is complete. 

5.2  Corollary 

The theorem: Let X be a finite or infinite set.  Then the Boolean algebra  XP  is 

atomic. 
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This means that the Cantor set,   2 P  is complete and atomic.  The collection of all 

finite subsets of  , which shall be denoted  F , is a countably infinite collection.  

Thus  F  is a proper subset of the Cantor set,   2 P . 

5.3  Result 
Any countably infinite Boolean algebra is not atomic.  

Proof 

Let B be a countably infinite Boolean algebra, that is of cardinality 0 , 

and suppose B is atomic.  Let A be the set of all atoms of B and by the 

isomorphism theorem  B AP .  A cannot be finite, for then B would 

be finite.  Therefore, A is countably infinite.  Then  P A  is an atomic 

Boolean algebra of cardinality  2 .  This contradicts the assumption 

that B is of cardinality  .  Hence, B cannot be atomic. 

5.4  Result 
The Boolean algebra, S, of (propositional) statement bundles is not isomorphic 

to some  AP . 

Proof 

Since the set of statements is denumerable, and the statement bundles 

are equivalence classes defined upon them, then the set of statement 

bundles is also denumerable. Suppose  S AP  for some set A.  But 

then A must be infinite, for so is S.  The least cardinality A can have is 

0 , whence the cardinality of    0
02AP  by Cantor’s theorem. 

[Chap.2 / 2.7.6]. 

5.5  Corollary 
The Boolean algebra S of (propositional) statement bundles is atomless. 

Proof 

The Boolean algebra S is countably infinite.  Hence by the preceding 

theorem it is atomless. 

5.6  Result 
Every atomless Boolean algebra with more than one element must be infinite. 

 Proof 

The unit 1 is different from zero, so there is a non-zero element 1p  

strictly below 1; otherwise, 1 would be an atom.  Because 1p  is not zero, 

there  must  be  a  non-zero  element   strictly  below  1p ;  otherwise, 1p  
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would be an atom.  Continue in this fashion to produce an infinite, 

strictly decreasing sequence of elements   1 21 ...p p . 

5.7 Result 
Any two countably infinite Boolean algebras (without atoms) are isomorphic. 

 Proof 

It can be shown that the order of any finite Boolean algebras is 2n  for 

some n , and any two finite Boolean algebras with the same number 

of elements are isomorphic. 

Let A, B be two countably infinite Boolean algebras.  Let   0 1 2, , , ...A a a a  

and   0 1 2, , , ...B a a a  be enumerations of A and B respectively.  The 

proof will be a “back and forth” argument. 

The proof proceeds inductively on the order of subalgebras. 

For  0n  let     0 00,1  and 0*,1*A B ; then 0 0A B . 

For the induction step, suppose that the result is true for all k n ; that 

is k kA B . 

 Suppose n is even. 

Let   1j na A A  be the element with smallest index j, and let 

nA  be the subalgebra generated by    1j na A . 

Then there is an element   1m nb B B  such that the subalgebra 

nB  generated by    1m nb B  is isomorphic to nA . 

Suppose n is odd. 

In this case select first   1m nb B B  to generate nB , and the 

claim is that there is an element   1j na A A  that generates 

n nA B . 

 So the induction step holds and so    n nA A B B . 

We would also have to prove that both algebras pair off atoms in the 

respective finite subalgebras.  (This proof is based on Komjáth and 

Totik [2000].  There is also a proof in Givant and Halmost [2002] p.135) 

5.8  The algebra of all finite subsets of natural numbers 
 

Let us now interpret these results in the light of what we have learnt about the 1-point 

compactification of  , which we treated as the compactification of the antichain  , having 

the same elements as   but having “forgotten” its chain structure.  The compactification 

creates a closed, bounded set,          that  is  equinumerous  to   ;  hence  the  lattice 
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generated by this skeleton is the Cantor set, 2 .  We see that  F , which is the ideal in 2  of 

all finite subsets of   is a countably infinite algebra in its own right.  About this structure, 

Birkhoff writes: - 

 

Stone has defined a generalized Boolean algebra as a relatively complemented 

distributive lattice with an O (but not necessarily an I) such as the following:  

The lattice  2  of all finite subsets of the set    of positive integers is a 

generalized Boolean algebra.  The corresponding characteristic functions (with 

values in 2 ) form a Boolean ring, which is the restricted direct sum (product) of 

countably many copies of 2 .  Note that  2  is an ideal in 2 , the set of all 

subsets of  ; the quotient-lattice  



2

2
 has many interesting properties. 

(Birkhoff [1940] p.49) 

 

Stone introduced the symbol  2  for  F .  2  is also seen in the literature, and this shall be 

used here in preference because of the unbounded nature of  F .  I shall write   F 2 , 

which is also standard practice, because I regard 2  as the underlying structure to which 

many other structures are isomorphic.  For example, the set of all cofinite subsets of  , 

denoted  C  is isomorphic to 2 .  Any countable number of products or sums of 2  is 

isomorphic to 2 .  The Boolean algebra of all finite and cofinite subsets of  , denoted 

    FC FC  is also isomorphic to it.17 

 The above results show that   F 2  is atomless, and this would appear puzzling.  

The reason why  F  is atomless is because   is potentially, not actually, infinite.  It would 

seem that in the singleton sets        0 0 , 1 1 , ...  we have ideal candidates for atoms 

of the resultant algebra, all the more so because the corresponding sets based on ordinals 

   0 0 , ...  are atoms of the atomic, complete Boolean algebra 2  of which  F  is a 

proper subset.  However, the problem is resolved when we realise that  F  may be regarded 

as being always in a state of ongoing generation that has never been completed.  Suppose we 

take it as completed as some finite stage of its generation; then what we obtain is a finite set 

of notional atoms:        0 , 1 , ... ,A n  and the finite Boolean algebra n2 .  It is important to 

realise that this is atomic in itself but as a representation of  F  always incomplete.  No 

finite determination of notional atoms of   F   is  ever  sufficient  to  capture  its  potentially 

                                                           
17  FC  is an algebra in this case and not merely a generalised one, because it contains the topmost 

element 1 of the algebra 2 . 
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infinite structure.  A determination of notional atoms,        0 , 1 , ... ,A n , may potentially be 

enlarged in one of two equivalent ways: either (1) we had further atoms to the end of the list, 

    1 , 2 , ...n n  , or we allow meets of the notional atoms to be defined:         0 1 , 0 2 , ... ; 

the formation of these shows that the notional atoms never were true atoms in the first place; 

the two approaches are equivalent because the second of these would result in a re-labelling 

of the notional atoms to new notional atoms:             
   0 0 1 , 1 0 2 , ... ;   F 2  is 

an algebra that possesses notional atoms rather than real ones.  They are notional because any 

finite determination of   F 2  is such that it may be embedded in another larger lattice 

with new notional atoms that subsume the previous ones.  This process of replacing one 

determination of   F 2  by a larger one, in which it is embedded, I shall call lowering the 

floor of the lattice.  [Chap.5 /5.8 and Chap. 7 /1.6]  This is on the principle that the notional 

atoms are being shown to not really be atoms by the formation of new meets lying “below” 

them in the extended lattice.  Hence   F 2  is not a determinate Boolean algebra but 

rather a potentially infinite collection of finite algebras: 

  

      
12 4 2 2, ... , , ...

n n

F 2 2 2 2 2  .  What was denoted by    P  above [Sec. 3.24] is 

the supremum of this sequence. Because   is locally compact, so is  F ; likewise, we see 

that each member of the sequence above is compact (a fortiori locally compact), but  F  

itself is not compact because it is not bounded above.  The maximal ideal is the completion of 

 F . 

 5.9 (+)  The ideal and maximal ideal of all finite subsets of natural numbers 

 1.            0 1 2 ...F P P P  

  Potentially infinite ideal of all finite subsets of natural numbers. 

 2.                  max 0 1 2 ...P P P P P  

  Actually infinite maximal ideal of all finite subsets of natural numbers. 

 

The relationship of  F  to   is as   to  .   

 5.10 (+)  Definition, interior of maximal ideal 

 I shall call  F  the interior of  . 

 

For     0,1,2, ...  we can form singleton sets,        0 , 1 , 2 , ... ,  and identify these with the 

atoms.  So the Boolean algebra  2 2  is atomic.  Being atomic has an orthogonality 

property: if  1 2,  are any two atoms then   1 2 0 ; this confirms that any singleton set can 

be identified with an atom.  Atoms may also be represented by prime numbers in the lattice of 

divisors where: - 
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  least common multiple and    greatest common divisor 

 

For any two primes  1 2 0p p , so atoms may be regarded as prime factors of the lattice.  The 

set     0,1,2, ...  acts as a reference set for atoms for an atomic Boolean lattice 2  because 

every element within it can be put into one-one correspondence with a prime, excepting the 

“point at infinity”  .  In a countable non-atomic Boolean lattice there are no true singleton 

subsets, and any subset appearing as a singleton subset is merely a notional atom or notional 

prime.   

5.11  Countable collection of prime generated infinite and coinfinite sets 
 

Let      PI PI  denote the countable collection of prime generated infinite and coinfinite 

sets – sets formed from     by deleting sets of infinite size that are equivalence classes of 

numbers divisible by a given prime to obtain other sets of infinite size.  Specifically, denote 

the set of all numbers divisible by prime p by   p .  For example: - 

   2 0,2,4,6,...  is the actually infinite set of all even numbers. 

Then we obtain ideals in  PI by the difference of   and any equivalence class   p .  For 

example: - 

         1 2 1,3,5,7,...  is the set of all odd numbers. 

Since   2  is a member of the lattice 2 , then its complement        1 2  is a member of the 

lattice.  This lattice  PI  is isomorphic to     FC FC , which contains the singleton sets 

 k  for all k , and the Boolean primes [See 7.19 below]    k .  Likewise,     2  is not a 

prime and   2  is not an atom of 2 , which is atomless and likewise, lacks its Boolean primes.  

The structure of  PI  is simultaneously generated downwards from   and upwards from 

Boolean zero.  It meets in the middle because any element in the middle can be reached after a 

countable number of joins, meets and relative complements.    

These sets are equinumerous to    1,2,3,... ; they are infinite sets and members of 

the algebra of infinite and co-infinite subsets of  .  The complements are always also infinite 

sets as well.  By taking intersections and complements we obtain “smaller” sets – in the sense 

of proper subsets, but these are also infinite subsets of infinite sets.  The intersection of any 

two of these sets is an infinite set.  We never break out of infinity and to do so would require 

  operations, equivalent to taking a limit.  Examples of these operations are: - 

 

 
 
 

 
 

              
                        

                 

0 0

1 1

0 1 0 12

2 0,2,4,6, ... 2 6 2,4,8,10, ...

6 2 3 0,6,12, ... 30 6 6,12,18,24, ...

30 6 5 0,30,60, ...

x y

x y

y y y yx
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We are “stuck in the middle” of the lattice – in what may be called the boundary region of 2 .  

We have    PI 2  which is countably infinite and atomless. 

 



 





 







 

 

 

5.12  Model of the countable collection of intervals identified by their end-points 
(Givant and Halmos [2009] p.25 et seq.) 

Left half-closed intervals:       , :a b x X a x b  define an interval algebra. 

 

0 1

1 2 3 4

) ) ) )
 

 

It is a countable collection of intervals identified by one end points.  Each 

interval is an open subset of   0,1  and hence atomless.  

  

The degenerate algebra is the one-element Boolean algebra.  This is “vacuously atomless” 

because it has no non-zero elements.  About the interval algebra, Givant and Halmos 

comment: -  

 

Interval algebras provide examples of non-degenerate atomless Boolean 

algebras.  For instance, the interval algebra of the real numbers is atomless, and 

so is its subalgebra  consisting  o f the  finite  unions of left half-closed intervals  
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with endpoints that are rational numbers (or  ).  Notice that this last algebra is 

countable.  Quite surprisingly, it is the only possible example of a countable 

atomless Boolean algebra that is not degenerate, at least up to isomorphic 

copies  (Givant and Halmos [2009] p.134.) 

 

The intervals are connected and hence do not provide atoms.  If either we strive to create 

totally disconnected sets by taking countable intersections of these intervals and so reach 

down to prime ideals = atoms, or we strive to create larger intervals by taking unions of these 

intervals and so built up to maximal filter, neither operation can be completed.  We are always 

left with sets that contain infinite collections of points in both directions.  This is a model of 

the atomless algebra. 

5.13  Result, the quotient algebra 




2

2
 is atomless. 

Proof 

Let       0x  denotes any equivalence class in 




2

2
; that is 



  x
2

2
.  Then x 2  

is an infinite set.  Since x is an infinite set it contains a countable number of 

infinite subsets that can be arranged in a chain.  That is, there is also an infinite 

set y x  such that x y  is infinite.  Since y is infinite 
 





 0y
2

2

.  Since y x  

we have       y x .  Since y is infinite  x y 2 ; hence  x y
2

 and       x y .  

So we have 
 





       0 y x
2

2

.  That is,   x  is not an atom.  By generalisation, no 

equivalence class 


    0x
2

2
 can be an atom.  In 





2

2
 the equivalence classes 

are formed by taking any infinite set x and adding to that set any finite set (that 

is, any set  r 2 ; that is,     x x 2 . 

 

6 Formal proof of the finite Boolean representation theorem 
 

I gave an informal proof of the finite Boolean representation theorem above.  [4/ 10.1 above]  

Now I proceed to a formal proof.   We have seen that a Boolean algebra is atomic iff 


 1
x A

x . 

6.1  Definition, set of all atoms 

Let B be a Boolean algebra and let x B .  Then we define   x  to be the set of all 

atoms b B  such that b x  and    1 the set of all atoms of A B .  That is 

 
 

    
 

1

 where  is an atom and i i i

B A

x b b b x
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This is a contraction mapping of the lattice onto the set of atoms, which is its skeleton.  We 

also have   0 0 .  0 is the fixed point of the contraction mapping.  What this is saying is 

that every element x B  can be uniquely written as the join of the atoms that it dominates: 

 





x
x .  To confirm this we need the following results. 

6.2  Lemma, isomorphism within of Boolean algebra of the sets of atoms 

Let B be a Boolean algebra with   x  defined as above.  Then the function 

  x  is one-one:         iff  x y x y . 

 Proof 

Suppose x y .  Then either x y  or y x .  Let us assume x y .  

Then  x y 0 .  The fact that B is atomic implies that there exists an 

atom   x y .  This implies   x  ad    x .  But it also implies 

  y , hence    y .  Hence      x y . 

6.3  Theorem, isomorphism theorem  
Let B be a Boolean algebra, let  be the isomorphism from x B  to the set of all 

atoms b x  as above, and let    1A .  Then,   is an isomorphism from B 

into  AP .   

Prerequisites 

1. The power set of a set   iX  is the closure under the 

operations of relative complementation and intersection of the 

sets     1 2, ,...  

2. The Boolean algebra B is closed under the operations of 

complementation and join.  That is, if x B  then  x B  and if 

,x y B  then  x y B . 

3. The lemma above, that   x  is one-one from B into the set 

 aP  of all subsets of    1A . 

The idea of the proof 

Since   is already shown to be one-one we have to show that it is into 

 AP .   Since the set of all atoms relative to an element x may be 

different relative to its complement x  we have to show that the sets 

  x  and   x  partition the set of atoms A.  Likewise, we have to 

show that        ,x y AP  imply      x y AP . 
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Proof 

1. Possibly,     x AP .  But we can show that       x x .  

For let b be an atom.  Then b x implies b x .  Therefore, 

      x x .  Likewise b x  implies b x  and 

       x x .  What this says is that   x  and   x  are 

disjoint sets that partition    1A . 

 So     x AP , 

2. Possibly       x y P A .  But we can show 

          x y x y . 

 For let b be an atom.  Then      and b x y b x b y  so  

                  and b x y b x b y b x y  

 Likewise,  

 
   
     

    

     

 and b x b y b x y

b x y b x y
 

 So      x y AP . 

 

What this theorem affirms that a lattice point, say p q , maps to a subset of the atoms; it is 

uniquely represented by a subset of atoms.  For example, in 42  we have    1,2,3p q  or 

equivalent.  However, the theorem is valid for all atomic Boolean algebras, both finite and 

infinite.  I state the following theorem without proof. 

6.4  Theorem, size of finite a Boolean algebra 
Let B be a Boolean algebra, and let n, n finite, be the number of elements in the 

set    1A  of all atoms of B.  That is    1n .  Then  2nB .18 

 

This result, together with the main theorem above, yields the finite Boolean representation 

theorem. 

6.5  Corollary, the finite Boolean representation theorem 
If B is finite, then this isomorphism   is onto (and hence a bijection). 

 

It is important to appreciate the distinction here between “into” and “onto”.  The isomorphism 

theorem above yields the result that any atomic Boolean algebra, B, is contained within the 

power set of its atoms but it does not equate that Boolean algebra with its power set.    In fact,  

                                                           
18 A proof may be found in Mendelson [1970] p. 186. 
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it does not even say that B is isomorphic to a field of sets contained within that power set.  

For the finite case, atomic Boolean algebra, complete field of sets and power set of the atoms 

all coincide.  This result significantly does not extend to the infinite case. 

 

7 Ideals in a Boolean algebra 
 

Recall the fundamental definitions for a lattice. 

        JOIN sup , MEET inf ,x y x y L x y x y L  

Filters (up-sets) and ideals (down-sets) were introduced earlier [4.6.1].  Filters are very 

important for analytic logic built over a lattice since the filter of a lattice point   is 

synonymous to the consequences of that lattice point:  ... .  Filters and ideals are dual 

concepts, and in the context of Boolean algebras it is usual to develop the theory primarily for 

ideals and argue by duality that the same theory applies to filters.  

7.1  Definition, ideal 

Let    , , , ,0,1B B  be a Boolean algebra.  Let J B  be a non-empty subset of B.  

The J is said to be an ideal of B if 

1.    ,x y J x y J  

2.     ,x J b B x b J  

Examples 

 0  and B are both ideals of a Boolean algebra B. 

7.2  Definition, proper ideal 
Every ideal of a Boolean algebra B, different from B is said to be a proper ideal of 

B.   

 7.3  Result 
Let J be an ideal of a Boolean algebra B, let x J  and y x , then y J .   

 

What this result emphasises is that everything that lies below a point x J  in an ideal also 

lies in the ideal J, and this is why they are called down sets.  This also means that the natural 

way to picture an ideal is as the down set of some element of the lattice x J , so that the 

ideal is generated from the top down.  As it happens, not all ideals can be generated in this 

way.  When they are, they are called principal ideals. 

7.4  Definition, principal ideal 

   :uJ v B v u  in the above result is said to be a principal ideal of B. 
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Examples 

1.  0  is a proper ideal . 

2. J is a proper ideal iff 1 J . 

 

Principal ideals are defined by “topmost elements”.  To say that an ideal is principal is to say 

that there is a “topmost” that is principal element in the lattice and that the ideal comprises 

every other element in the lattice that lies below this. That is, an ideal J is principal in Boolean 

algebra B iff          :uu J J v B v u .  (The term “topmost” is not standard and is 

introduced here to help visualise the concept.)  

 7.5  Result, principal ideal 

Let u B  be an element of a Boolean algebra B.  Then the set    :uJ v B v u  is an 

ideal of B.  (Proof, Mendelson [1970] p. 144)  

 

In a finite Boolean algebra every ideal must be principal.  This follows immediately from the 

definition of an ideal where we have    ,x y J x y J and in a finite Boolean algebra every 

set of lattice points has a join.   

7.6  Properties of principal ideals 
(Mendelson [1970] examples 5.9,5.10)  

1. Let A be a non-empty set and  AP  the Boolean algebra on A.  Then the 

atoms of  AP  are the singleton sets  a  where a A .  Hence any 

maximal principal ideal consists of all subsets X of A such that a X . 

 Example 

 42  is the algebra of subsets of   1,2,3,4A .  The atoms are 

       1 , 2 , 3 , 4  and by deleting any one member of A, we obtain a 

maximal principal ideal.  These are        1,2,3 , 1,2,4 , 1,3,4 , 2,3,4 . 

2. In any finite Boolean algebra every maximal ideal is a principal ideal. 

 

In an infinite Boolean algebra not every infinite set of lattice points need have a join, or 

alternatively, that join need not be contained in the ideal.  So to consider non-principal ideals 

we must be discussing an infinite lattice.  The paradigm of a non-principal idea is the ideal of 

all finite subsets of  , which is a subset of the Cantor set,    0,12 .  We can see 

automatically that this subset is (a) an ideal and (b) cannot be principal.  It is an ideal because 

for every two finite subsets of   there is a join; it cannot be principal because there cannot be 

a single finite subset of   that contains every other finite subset of  .   This is a consequence  
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of the manner in which the ideal is generated from the bottom upwards as a potentially infinite 

structure.  As it follows that in any infinite set not all ideals are principal it also follows that 

there must be some other method of generating an ideal – one that proceeds from the 

“bottom up” just as these remarks suggest. 

7.7  Result, generator 

Let X B  be a subset of a Boolean algebra B.  Then the intersection   iJ J  

such that iJ  is an ideal containing X,   iX J , is itself an ideal such that 

X J . 

7.8  Definition, generator 
The set X corresponding to the ideal J in the above result is said to be the 

generator of J.  We write this   GenJ X . 

7.9  Theorem 

Let X be any subset of a Boolean algebra, B, then  Gen X  is the set 

                 1 1Gen ... ... :  and i i k k i iX x b x b x b x X b B . 

(Proof, Mendelson [1970] p. 144) 

7.10  Theorem 
Let X be any subset of a Boolean algebra, B, then  Gen X  is the set 

         1Gen ... ... :i k iX y x x x x X
 

(Proof, Mendelson [1970] p. 144) 

 

To say that an ideal is principal in a Boolean algebra:         :uu J J v B v u  means that 

this principal element u is the disjunction of elements of a set X that generates J.  In other 

words, to say an ideal J is principal is to say that it has a set X that generates J such that 

      GenX J X  and 


 
x X

u x ,  uJ J .  This is the result that clarifies the meaning of 

generators in this context.  The generators could be atoms, if atoms exist.  If atoms do not 

exist, take any subset X and form the disjunction of its elements     1 ... ... :i k ix x x x X .  

Then  Gen X  is the ideal that lies below this topmost element 

7.11  Result 
Let X be any subset of a Boolean algebra, B, then  Gen X  is proper ideal of B iff  

    1 ... ... 1i kx x x  where ix X .  

(Proof Mendelson [1970] p. 144)  
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7.12  Result   
(Mendelson [1970] p. 160) Let B be an atomic Boolean algebra.  Then very 

element x B  is the l.u.b. (supremum) of the set: - 

       :  is an atom & x b B b b x  and x is not the l.u.b. of any proper subset 

of   x . 

Proof 

We have       :  is an atom & x b B b b x , so the condition b x  

implies x is an upper bound for   x .   

Let z be an upper bound of   x  such that x z .   

Then     0x z x z . 

Since B is atomic there exists an atom  b x z . 

Therefore, b x  and  b x .   

Also b z .  But as z is an upper bound for   x , then b z .  

Therefore,    0b z z  which is a contradiction, since b is an atom.  

Therefore, z must be an upper bound of   x  such that x z , an so x 

must be the l.u.b. of     x .  (For the second half of this proof, 

Mendelson [1970] p. 160) 

 

What this means is that every set of atoms generates an ideal.  Ideals are generalised Boolean 

algebras embedded in a larger Boolean algebra.   

 7.13  Definition, subalgebra 
 (Givant and Halmos [2009] p. 74) 

A Boolean subalgebra of a Boolean algebra A is a subset B of A such that B 

together with the distinguished elements and operations of A (restricted to the 

set B) is a Boolean algebra.  The algebra A is called a Boolean extension of B.  

7.14  Definition, generalised Boolean algebra 
(Birkhoff [1940] who attributes this to Stone) 

A generalised Boolean algebra is an algebra that has no largest element 1, and 

hence is not a complemented lattice.  However, it is a relatively complemented, 

distributive lattice.  [See 5.8 above] 

 

Thus, we have ideals that are not principal.  This, therefore, invites the following definition: - 

7.15  Definition, maximal ideal 
An ideal M of a Boolean algebra B is said to be maximal if M is a proper ideal 

and if there is no proper ideal J of B such that M J . 
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This definition is essential in order to distinguish two concepts of “maximality” – the first is 

the natural concept of principal ideal where the ideal may be thought of as generated top 

down from a “topmost” element; the second arises from the bottom up approach as a species 

of limit – it is the largest ideal that can be generated from the bottom up without reaching the 

topmost element of the lattice as a whole, that is 1.  If the lattice is atomic then this makes the 

distance of 1 above M just 1.  The distance from an atom to 0 is also just 1.  This last remark 

makes it clear that maximal ideals are to 1 in the lattice as atoms are to 0.   

It follows from the definition of an ideal that 2  is an ideal in 2 , but we have not 

proven that 2  is a maximal ideal.  It is known that it is impossible to do this in ZF set theory, 

and that its proof requires the Axiom of Choice [3.12 above], specifically in its equivalent form 

of Zorn’s lemma: - 

7.16  Zorn’s lemma 
Let X be a partially ordered set in which every chain (i.e totally ordered subset) 

has an upper bound, then X possesses a maximal element. 

7.17  Definition, subset chain 
Let S be a set of sets.  Then a  -chain in S is a subset of S such that if A C  

and B C  where A B , then either A B  or B A . 

More generally 

Let R be a binary relation on a set W.  Then an R-chain in W is a subset 

of W on which R is transitive, connected and antisymmetric. 

7.18  Definition, technical variant of Zorn’s lemma 

Let S be a set of sets such that for every  -chain C in S, the union 


A C

A is also 

in S.  Then there is a C-maximal set M in S. 

7.19  Definition, prime ideal 
Let J be an ideal of a Boolean algebra B.  Then J is said to be prime iff for all 

,x y B  such that x J  and y J  we have  x y J . 

7.20  Theorem 
A proper ideal J in a Boolean algebra B is maximal iff it is Boolean prime ideal. 

(Proof, Mendelson [1970] p. 145) 

 

So there is some duplication of terminology here since prime ideal means the same as 

maximal proper ideal.  This means that in an infinite Boolean algebra, prime = maximal.  Not 

all maximal ideals are principal: the join of an infinite set does not necessary exist in the 

lattice.   
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7.21  Maximal ideal theorem 
Let J be a proper ideal of a Boolean algebra B.  Then there is a maximal ideal M 

in B such that J B .  This means that every proper ideal can be extended to a 

maximal ideal.  (Note underlining.) 

  Proof 

Let J be a proper ideal of a Boolean algebra B.  Let Z be the class of all 

proper ideals K such that J K .  Let C be any  -chain in Z.  Then 


I C

I  

is a proper ideal containing J.  However, this is automatic, because by 

definition every element in M contains J, so the union of all such ideals 

in C must contain J.  Hence, by Zorn’s lemma there is a maximal set M in 

Z such that J M .  Furthermore, M must be a maximal ideal in B.  To 

show this, let *M  be a proper ideal such that  *M M .  Then *M Z  

so *M M . 

 7.22  Corollary 

Let   2 P  be the Boolean algebra of all subsets of the infinite set  .  Let 

 F  be the ideal of all finite subsets of  .  Then  F  can be extended to a 

maximal ideal  . 

 7.23 (+)  The Maximal idea theorem is the central result of representation theory 
 

This is the central result of the representation theory of infinite Boolean lattices.  The actual 

representation theorem follows below [7.29 below], and is also called the Prime Ideal theorem.  

In essence, these are all the same theorem and are consequences of the application of the 

Axiom of Choice to the ideal  F  to extend it to a maximal ideal  .  It is this result that 

justifies the distinction we have drawn between the two concepts, and also indicates that they 

are separate structures.   

 I have taken the statement of this theorem from Mendelson [1970].  However, the 

expression “in B” in it (underlined above) [Second line 7.21] is ambiguous.   F  is an ideal in 

B (which is here B 2 ) but its maximal ideal,  , in effect demonstrates that B (where B 2 ) 

is a complete Boolean algebra in its own right.   FC  is a Boolean algebra of which  F  is 

an ideal, but   is not a maximal ideal of  FC ;   belongs to the Cantor space, 2  of 

which   FC  is a sub-algebra.  Hence, the Axiom of Choice is allowing us to extend and 

complete  FC  by embedding it in 2 . 
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We have            0 1 2 ...F P P P  as an unbounded sequence.  Just like   it has 

no maximal element and satisfies the Archimedean property [See 3.1 above].  And yet, by 

applying Zorn’s lemma to it, we have demonstrated the existence of     max F .  Compare 

with      0,1,2, ... , , so that    max .  We have     max , so that   remains 

unbounded above, but      max , so that it does have a maximum.  By a similar 

argument there is a sequence of ideals   0 1 2, , , ... ,m m m  of which   is the last with 

    0 1 2, , , ...F m m m  as an unbounded sequence, so that    F  yet  . 

Under the hypothesis     the application of Zorn’s lemma in the Maximal ideal 

theorem leads to an actual contradiction since it ascribes a maximum to a sequence  F  that 

could not have one.  The “paradox” is resolved by          so the sequence on which 

Zorn’s lemma is applied in this case is not  F  but       0 1 2, , , ... ,m m m F .   

Zorn’s lemma is also used in the construction of the one-point compactification of   

[Result 3.22 above], and it seems that its function (as with its equivalent Axiom of Choice) is to 

assert the existence of an actually infinite complete partition of the interval. 

7.24  Result 
Every proper ideal J of a Boolean algebra B is equal to the intersection H of all 

maximal ideals containing it. (Proof Mendelson [1970] 5.34)    

 

This means that every proper ideal can be extended to a maximal ideal.  Given the equivalence: 

maximal proper ideal   prime ideal, this is equivalent to: - 

7.25  Prime ideal theorem 
Let J be a proper ideal of a Boolean algebra B.  Then there is prime ideal in B that 

contains J. 

7.26  Lemma, constructing ideals by adjoining elements 
1. Let J be an ideal of a Boolean algebra B and let b B .  Then 

  Gen J b  is an ideal consisting of all elements of the form 

  y b x  where y B  and x J . (Proof Mendelson [1970] p.145)    

2. Let J be an ideal of a Boolean algebra B and let  b B J .  Then the ideal 

  Gen J b  is a proper ideal iff   1x b  for all x J .  That is, for all 

x J , iff  b x .  (Proof Mendelson [1970] p.145)    

 

This is a kind of technical lemma required in the proof of the theorem below: - 
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7.27  Theorem, maximal ideals as partitions 
Let M be a proper ideal of a Boolean algebra, B.  Then M is maximal iff for any 

b B  either b M  or  b M . 

1. Suppose M is maximal and b M .  Let    GenJ M b .  This defines 

an ideal such that M J .  Since M is maximal, this entails J B .  

Hence by the lemma above  b x  for some x M .  Since M is an ideal 

this entails  b M . 

2. Conversely, suppose either b M  or  b M  for all b B .  Let M J  

where J is an ideal.  Suppose  y J M .  This means y J  and y M , 

hence  y M .  Then   1y y J .  Hence J B , which entails that M is 

maximal. 

7.28  Corollary  
(Givant and Halmos [2009] p. 173, also Mendelson [1970] p.149)  

Let J be any proper ideal of a Boolean algebra B.  For every element p in B that 

does not belong to J there exists a maximal ideal M that includes J but does not 

contain p. 

 Proof 

The ideal N generated by  J p  is proper.  Then the maximal ideal 

theorem entails that there is a maximal ideal that contains N and hence 

also M.  As it is a maximal ideal that contains p  it cannot contain p. 

7.29  Corollary, Boolean representation theorem (Birkhoff) 
Every Boolean algebra is isomorphic to a field of sets. 

Proof idea 

For any Boolean algebra B there is an isomorphism into the power set 

 MP  of the set of all maximal ideals M in B.  The image of this 

isomorphism is a field of sets contained in  MP . 

Proof 

Let B be any Boolean algebra.  Let m denote a maximal ideal.  Let M 

denote the set of all maximal ideals.  For x B  let  

   
 
 

  

  

      

all maximal ideals  such that 

:

:   since for any  either  or 

x m M x m

m M x m

m M x m x B x m x m

X

. 

Then  1X  is the set of all maximal ideals of B and   1M X .  We also 

have  

1.    0X . 

2.     0x xX . 
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3.      x xX X  as every maximal ideal contains either x or x . 

4.        x y x yX X X  

Let m denote a maximal ideal.  That is m M . 

   x m x y m  since  x x y .  Similarly,    y m x y m  since 

 y x y .  Hence,        x y x yX X X .  Conversely 

     and x m y m x y m .  Thus, by contraposition 

     or x y m x m y m .  Hence 

       x y x yX X X . 

Hence X is an isomorphism from B into  MP , the set of all subsets of 

the set M of all maximal ideals. 

7.30  Finite example 

The Boolean algebra 42 : - 

{1} {2} {3} {4}

{3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

1 = {1,2,3,4}

{1,2} {1,3} {2,3} {2,4}
p q pqp qº

p q  p q p qp q

p q
p q  p q  p q

p qº

0  

 

The maximal ideals (Boolean primes) are 

                
                
                
                

    

    

    

    

4
1

4
2

4
3

4
4

:1 2,3,4 , 2,3 , 2,4 , 3,4 , 2 , 3 , 4 ,

: 2 1,3,4 , 1,3 , 1,4 , 3,4 , 1 , 3 , 4 ,

: 3 1,2,4 , 1,2 , 1,4 , 2,4 , 1 , 2 , 4 ,

: 4 1,2,3 , 1,2 , 1,3 , 2,3 , 1 , 2 , 3 ,

m p p

m p p

m p p

m p p

2

2

2

2

 

   
 
 

  

  

      

all maximal ideals  such that 

:

:   since for any  either  or 

x m M x m

m M x m

m M x m x B x m x m

X

 

    
    
    
    

 

 

 

 

1

2

3

4

1 1

1 2

1 3

1 4

m

m

m

m

X X

X X

X X

X X
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                 
       

  
  

        

       

  

  

  

 

1 2 1 21 2 1 2 1 2 ,

1,2 1 2

all maximal ideals  such that 1,2

: 1,2

1 , 2 1, 2

m m m m

m M m

m M m

X X X X X X

X X

X X X X

 

Likewise 

           1 2 3 1 , 2 , 3X X X X X X  

0

X4 X3 X1X2

X X3  4 X X2  4 X X1  4 X X2  3 X X1  3 X X1  2

X X X1  2  3 X X X2  3  4 

1

X X X1  2  4 X X X1  3  4 

 

 

 Compare this with 

 
                      
    

  



1 2 1,3,4 , 2,3,4 , 1,3 , 1,4 , 2,3 , 2,4 , 3,4 , 1 , 2 , 3 , 4 ,

1,2,3 , 1,2,4

m m
 

and 

        1 2 3,4 , 3 , 4 ,m m  

All of these express the same underlying facts. 

 

For the finite case we generate the Boolean algebra upwards as the power set of the set of its 

atoms, and the construction involving maximal ideals is not necessary.  For infinite cases this 

is not possible.  Therefore, we assume that the corresponding maximal ideals exist, which we 

justify by the Axiom of Choice, and generate the complete Boolean algebra downwards as a 

algebra of maximal ideals.  Each maximal ideal defines an atom of this dual algebra for which 

the set of atoms is a basis.   

7.31  Result 
Every proper ideal J of a Boolean algebra B is equal to the intersection H of all 

maximal ideals containing it. 
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Proof 

By the maximal ideal theorem there is a maximal ideal containing J.  

Then J H .  To show that H J , let x J .  By  the lemma on 

constructing ideals by adjoining elements,  J x is a proper ideal.  By 

the maximal ideal theorem, there is a maximal ideal M such that 

   Gen J x M .  Whence J M  and x M .  But H is the 

intersection of all maximal ideals containing J, hence x H  and H J . 

7.32  Result 

A Boolean algebra B is isomorphic to a field  XP  of all subsets of a non-empty 

set X iff B is complete and completely distributive. (Proof Mendelson [1970] 

p.174)      

7.33  Alternative approaches to the Boolean representation theorem 
 

The approach here is to derive the Boolean representation theorem by the following route: (1) 

Definition of maximal ideals; (2) Zorn’s lemma to establish the maximal ideal theorem; (3) 

Maximal ideals acting as a basis for the Boolean algebra taking the place of atoms; (4) Boolean 

representation theorem as equating the Boolean algebra in the field of sets generated by that 

basis.   

It is as well to note that there is an alternative approach to this theorem, which is one 

that might also be more appropriate to a universal algebra19.  (1) Definition of 

homomorphisms; (2) Definition of quotient algebras; (3) Decomposition of algebras into 

factors of indecomposable algebras; (4) Use of Zorn’s lemma to establish Birkhoff’s theorem: 

Every algebra A is isomorphic to a subdirect product of subdirectly irreducible algebras that 

are homomorphic images of A. 

The first approach is due to Stone and the second to Birkhoff.  The two approaches 

are equivalent. 

7.34  Outline of the “universal” approach to the Boolean / Stone representation theorem  
 

An algebra A is directly indecomposable if A is not isomorphic to a direct product of two 

nontrivial algebras. 

7.35  Theorem 
Every finite algebra is isomorphic to a direct product of directly indecomposable 

algebras. 

                                                           
19 For this approach see also Burris and Sankappanavar [1981] 
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For Boolean algebras the only directly indecomposable algebra is   0,12 .  So all Boolean 

algebras are built up as products of this unit.  Although every finite algebra is isomorphic to a 

direct product of directly indecomposable algebras, the same does not hold for infinite 

algebras in general.  To find building blocks for algebras we therefore require the notion of a 

subdirect product. 

7.36  Definition, subdirect product 

An algebra A is a subdirect product of an indexed family   i i I
A  of algebras if 

(i) 


 ii I
A A  

(ii)     for each i iA A i I . 

7.37 (+)  Result 

The Cantor set 2  is the direct product of   copies of   0,12 , but 2 , the 

Boolean algebra of all finite subsets of  , is not the direct product of any 

denumerable number of copies of 2.  It is contained in 2  as a subfield. 

Proof  

Suppose 2  is the direct product of copies of 2.  Either 2  is the direct 

product of a finite copies of 2 or of infinite.   If infinite, then   2 2  

which is false, because 2  is a proper subset of 2 .  If finite, then 2  

is finite, which is too small.   

 

As an algebra 2  lies somewhere between k2  where k is any integer and 2 .  This makes it 

the subdirect product of 2.   

7.38  Theorem (Birkhoff) 
Every algebra A is isomorphic to a subdirect product of subdirectly irreducible 

algebras that are homomorphic images of A. 

Notes 

The proof of this requires Zorn’s lemma. 

7.39  Representation of Boolean prime ideals in the lattice of prime divisors 
 

The definition of an ideal in the language of a Boolean ring becomes,     ,x y J x y J .  This 

makes membership of an ideal appear as a divisibility property.  By contraposition 

   ,x y J x y J .  A Boolean prime is equivalent to a composite number that has a unique 

prime factorisation.  The duality principle [4.2.5] allows for the interchange of ideals for 

filters; this means that to each Boolean prime ideal there is a Boolean prime filter.  In the 

lattice of divisors, these Boolean prime filters actually are prime numbers. 
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7.40  Example 
As the following finite example illustrates, this reverses the usual definition of 

prime and composite. 

 

1

2 5

30

3

6 1510

0

6  10 10  15

1

6  15

6 1510 Boolean primes

Primes

Boolean zeroIdentity

Boolean unit

Boolean atoms

Composite
numbers

 

 

7.41  Elements in a complete Boolean algebra 
 

The combination of (1)    , (2) the Axiom of choice making   and   into sets, (3) the 

extension of the power set operation to these results, (4) the definition of     max F  and 

(5)            0 1 2 ...F P P P  together justify the assertion    P      P .  The 

status of   in this needs to be clarified.  We have             , which indicates 

that   is not an element or atom of the partition of   0,1  but a collection of them: 

         0 1 2 ... ;    is not a lattice point of  F .  Since the complete algebra 2  

contains all infinite meets and joins,   2  is a lattice point of this algebra, just as all its 

subsets are. 

 7.42  (+) Definition, maximal “element” 

  F 2  has no maximum in itself.  It is not a principal ideal in 2 .  This is 

because   has no maximum – it is unbounded.  However, within 2 ,  F  is 

bounded above, and we say that    max n2  is its maximal ideal; we define   

to be such that    P  and say that it is its maximal element. 

 

An incomplete algebra is one in which not all infinite meets and joins exist.  Hence, there are 

ideals in such an algebra that are not principal.  When the algebra is extended to a complete 

algebra X, in X all ideals are principal.  Hence a maximal element is a principal element that is 

a member of a complete algebra but not a member of its incomplete embedding. 
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 This result is consistent with Rubin’s proposition [3.18 above] – yet another version of 

the Axiom of Choice – which states that the Axiom of Choice is equivalent to the statement, 

“The power set of every ordinal is well-orderable”;   is not an ordinal, but under the Axiom of 

Choice it becomes an ordered set, and hence similar [Defined, Chap.2 / 2.8.3] to an ordinal; 

then    P  is also well-ordered. 

The role of the maximal “element” is analogous to the role played by a real number in 

its relation to an infinite sequence of rational numbers as in the Dedekind cut or any other 

definition of completeness.  Just as 2  is not an element of the sequence of rational numbers 

that defines it, so too the maximal “element” may or may not be an element of the ideal of 

which it is the supremum.  When it is not, I shall also call such an element a boundary 

element.  In the paradigmatic case of the ideal of all finite subsets of some infinite set X, the 

maximal element belongs to the boundary between the finite and infinite in the larger, atomic 

lattice  XP .   
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CHAPTER 6  
 

 
Cantor space 

 

  

 

 

1 Boolean and Stone spaces 

1.1  Definition, Boolean space 
A topological space that is compact and totally disconnected is said to be a 

Boolean space. 

1.2  Theorem, existence of Stone space 
Let M be the set of maximal ideals of a Boolean algebra B.  For any x B define 

     :x m M x mX .  Define a topology T for M so that arbitrary unions of 

sets of the form  xX  are open sets of T.  Then   ,BS M T  is a Boolean space in 

which the clopen sets of M are the sets  xX .    ,BS M T  is called the Stone 

space of B. 

 Example 

[See example 5 / 7.30]  Before proving this, let us illustrate it with a 

finite example.  In 42  the prime ideals (maximal ideals) are given by  

                       1 2 3 4: 1 , 2 , 3 , 4 , , ,m M m m m m mX 1 0 X X X X  

The topology T on M generates the Stone space where the prime ideals, 

1 2 3 4, , ,m m m m  of 42  become its atoms.  The atoms constitute a partition 

of the Stone space, which is compact and totally disconnected.  There is 

a Boolean algebra which is the power set       1 2 3 4, , ,m m m mP X 1 P  

which is isomorphic to 42 , the original Boolean algebra.  The Stone 

space is isomorphic to 42  but is an inverted copy of it. 

 Proof of the theorem 

If m is a maximal ideal then m is a proper ideal; hence  m xX  for some x B .  

To show that  ,BS M T=  is a Boolean space we must show that it is totally 

disconnected and compact.   

1. A space S is totally disconnected iff for distinct points ,a b S  there 

exists a clopen set C S  such that a C  and b C .  Now suppose that 

1 2,m m M   are  distinct  maximal ideals.   Then  there  is  a   1 2x m m  
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where  1m xX  and  2m xX .  Since         x xX X  we have  1m xX  but 

 2m xX .  So M is totally disconnected. 

 Example 

[See example 5.7.30]  In 42  we have  

      
      

              
              

        

 

 

 

 

 

1

2

1

2

1 2

1 1

2 1

2,3,4 , 2,3 , 2,4 , 3,4 , 2 , 3 , 4 ,

1,3,4 , 1,3 , 1,4 , 3,4 , 1 , 3 , 4 ,

2,3,4 , 2,3 , 2,4 , 2

m

m

m

m

m m

X X

X X

 

Let   2x . 

             
  1 3 42 1,3,4 1, 3, 4 , ,m m mX X X X X  

Hence             
 2 2 2 1 3 42 =  but 2 , ,m m m m m mX X . 

2. A space S is compact if every open cover of S has a finite subcover.  Let 

M be covered by a collection of open sets  O  where  A .  To aim for 

a contradiction, suppose M is not covered by some finite subset of  O .  

Each O  is a collection of sets of the form  xX ; hence M can be 

covered by a collection U of sets of the form  xX  where  x C B .  

Then no finite subset of U covers M.  Let 1, ... , kx x C  be any finite 

subset of C.  Then, because there is no finite subcover of M we have: - 

              1 2 1 2... ...k kx x x x x x MX X X X  

Thus    1 2 ... kx x x 1   for any 1, ... , kx x C .  Then the ideal 

generated by C is a proper ideal.  Hence, by the Boolean Prime Ideal 

theorem [7.25 below] there is a maximal ideal Cm  containing C.  But this 

applies to any 1, ... , kx x C , so  Cm xX .  Hence M is not covered by 

the collection U of open sets, contradicting our supposition that it was. 

 

The Cantor set is   2 2 .  The topology above  ,U T  for   is also a basis of the Cantor set, 

and hence shows that the Cantor set is compact.  [See 5 / 3.7]  We take the ideal  F  of all 

finite subsets of  .  Then we make a copy of this and add to each member the “point at 

infinity”  , which creates a collection homeomorphic to all cofinite subsets –  C .  Together 

these two collections cover  .  Both collections are independently locally compact.  A single 

set    U C  suffices to cover   but by the definition of the topology it must contain some 

finite subset of   as well; all the other points may be covered by a collection  of  members  of 
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 F .  Since this collection is locally compact there is a finite subcover of it.  Let this finite 

subcover be denoted U ; then U U  is a finite cover of  .  The set   acts as the 

skeleton of the Cantor set; hence the Cantor set inherits its compactness from  .  One-point 

compactification is an analogue of the Heine-Borel theorem – in its turn equivalent to the 

Completeness Axiom.   The compactness of the Cantor set also follows from Tychanoff’s 

theorem.  (For further comment see Givant and Halmos [2009] p. 305.)   

1.3  Tychonoff’s theorem 
Every product of compact spaces is compact.  Conversely, if a product of non-

empty spaces is compact then each of its factors is compact. 

1.4  A puzzel and its resolution 
 
Notwithstanding the remarks already made above, the compactness property for the Stone 

space has an air of paradox that should be investigated further.  For finite Boolean lattices 

compactness follows automatically, but in the infinite case there are prima facie reasons why 

the Stone space, here  BM S , should not be compact, that the theorem refutes.  To explain: the 

Stone space, M, is infinitely partitioned into atoms 1 2, , ...m m  which are separated from each 

other, disjoint and taken together the space is totally disconnected, as shown in the first part 

of the theorem.  Each atom is apparently related to some element x B  so that we have 

 m xX ; also B is infinite.  The definition of compactness requires that every open cover of a 

compact space has a finite subcover.  To show that X is not compact one must find an example 

of a cover for X that is not finite; so a space is not compact if there exists just one infinite 

open cover for it, which makes the meaning clear. 

 

 Example 

The open interval  0,1  is not compact in  .  For each member of the collection 

 
 
 

1
,1

n
 where  2n  is open in  0,1 ; also  





   
 


2

1
0,1 ,1

n n
.  But there is no finite 

subcollection of this collection that covers  0,1 .   

 

Following the example, one is inclined to conclude: surely the collection  xX  is an infinite 

open cover for  BM S ?  Examining the proof of the theorem closely we see that the crucial 

step when we are lead out of this conclusion occurs when the Boolean Prime Ideal theorem is 

cited to establish the existence of a maximal ideal m  for any subset of B.  This theorem in 

turn rests upon the Axiom of Choice (specifically in the form of Zorn’s Lemma).  The Axiom of 

Choice functions as a species of completion axiom; it is this principle that embeds the 

possibly non-atomic lattice B into a complete atomic lattice.  Specifically, in the case of the 

Cantor set,  X 2 ,  the ideal    F 2   of  all  finite subsets of   is extended  to  a  maximal  
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ideal  , which becomes at atom of the Stone space and corresponds to a maximal element  .  

(Proven below 2.1 and see also 5.7.41/42)  The Stone space of the Cantor set is also 

isomorphic to the Cantor set again, XS 2 .  Since the two sets are isomorphic, though 

inverted, there must be an element in X 2  corresponding to this atom  XS , which is an 

atom in X.  Since XS  is an inverted copy of X, this must be   .  Suppose now we wish to 

make an infinite open cover for X.  Then that must include the ideal  ; also   is included in 

every infinite open cover for X.  But   is the infimum in 2  of the set of all cofinite subsets of 

  which includes every infinite subset of  .  Hence, when   is subtracted from the cover, 

there remains only finite subsets of  , which because it contains only finite subsets must be 

compact – i.e. have a finite subcover.  Thus, it is the addition of   to X 2  and the 

correspondent addition of   to XS 2  that makes both compact.  Since    both 

elements belong to both any complete infinite Boolean algebra B and its Stone space BS  has a 

corresponding maximal filter   and a maximal ideal   where    . 

This is an exact analogy with the Heine-Borel theorem which renders the interval   0,1  

compact by adding the neighbourhood of 1 to the locally compact subset 0,1  and thus acts 

as a one-point compactification of it.  In the Cantor set, X 2 ,   represents the 

neighbourhood of 0 and   the neighbourhood of 1.  The addition of   to 2  completes it by 

embedding 2  in 2  and allowing a complete set of atoms for 2 . 

1.5  Result 
The clopen subsets of a Boolean space X form a field of sets. 

1.6  Definition, dual Boolean algebra 
The field of clopen subsets of a Boolean space X is called the dual (Boolean) algebra, 

denoted XB .   

1.7  Result, Stone duality 

The dual algebra XB  of the field of clopen subsets of BS  is isomorphic to the original 

algebra X.  (Proof, Mendelson [1970] p.171) Additionally, X and BS  are homeomorphic.  

(Proof, Mendelson [1970] p.171) 

 

I remark on the subtle difference between this theorem and the preceding Theorem 1.2 

demonstrating the existence of the Stone space.  Here we start with a Boolean space X and 

construct its dual algebra XB .  We then construct the Stone space, BS , of this dual and the 

claim is that  BX S .  In the preceding result we start with a Boolean space B and construct its 

Stone space.  A relation of isomorphism does not necessarily exist between  B  and  this  Stone 
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space BS .  This latter case is illustrated by the relation between the Boolean algebra,  FC , 

of all finite and cofinite subsets of   and the Cantor set, 2 .  The two are not isomorphic, but 

the Cantor set is the Stone space of  FC . 

 

2 Partition of the Cantor set 
 

Let   denote the maximal ideal of all finite subsets of  ; it cannot be a principal ideal in the 

sense that it cannot have a principal element   .   

2.1  Proof of this assertion 
To show this, note that the maximal ideal,  , consists of all subsets of   that 

do not contain some fixed element b .  But every singleton  b  (where J 

is the ideal of all finite subsets of   as above) .  If   has a principal element u 

then the meet of any two elements must lie in  .  That is for ,x y  we have 

 x y u  where   J .  Now  b  and    b  hence 

         b b . 

 

The one point compactification of   is: - 

          0,1,2, ... ,  

At this point I will introduce the result that we may identify the “point at infinity”    , 

which shall be justified later [See 2.4 and 2.5 below]; assuming this result, the one-point 

compactification may be written: - 

         0,1,2, ... ,  

  and   are different descriptions of the same underlying potentially infinite collection of 

all natural numbers, so their identification is possible if we “forget” the difference of order 

relations upon them.  Hence we may also write: - 

         0,1,2, ... ,  

and since we have defined         , this also gives: - 

     

We are therefore in a position to show that there is an element    ,  which is both 

principal and maximal.  Every set is closed in itself, hence   is a closed subset of itself.    is 

the closure of the set of all finite subsets of  , so we are in a position to define    P .  

The discussion above identified   as the unordered collection of members of  ; so under the 

“forgetful” identification     we also have    P .  Then,  by  the  Axiom  of  Foundation, 
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     , yet       .  Repeating the above proof but this time with   as the 

maximal ideal of all finite subsets of     we have      as the distinctive atom of 

the Cantor set that is not in   so the above proof does not go through.   

 This is what we would expect.  The ideal   is an atom of the Stone space   S F  

which is an inverted isomorphic copy of the Cantor set, 2 ; so there must be an atom in the 

Cantor set to which this ideal   corresponds.  Putting    P  and observing    we see 

that   is the atom in 2  that is the inverted corresponding image of   in the Stone space, 

  S F .  This permits the following diagrammatic representation of  : - 

 





0

 

  



Maximal ideal of all finite sets



 

 

The relation between      JP  and   reflects the usual relationship in a lattice, as 

indicated by the following result: A principal ideal pJ  is maximal if and only if p  is an atom.  

(Givant and Halmos [2009] p. 172)  

2.2  The “meaning” of the Axiom of Choice 
 

The Axiom of Choice is a species of completion axiom required for actually infinite 

collections.   The partition of     0,1  into     segments creates a unit of measure  (metric – see  
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[Chap. 4 /5.23 and Chap 2. /2.9.8]); disjoint adjacent atoms of the partition lie a distance of 1 

unit apart under this measure.  Relative to this measure it is not possible to distinguish the 

boundary between atoms that are a finite distance apart and atoms that are   units apart.  

There is an indeterminate boundary between the finite and the infinite partitions of   that 

cannot be measured.  Let us mark this indeterminate boundary by   .  Then the Axiom of 

Choice (or equivalent) asserts that    may be regarded as a partition of determinate sets.   

 

(   ){1}

1 2 . . .3



¥

0 1

{0} {2} {3}

0

{   }

{   }

 

 

2.3  Partition of the Cantor set 
 

We may apply the principle of Stone duality [1.7 above] also to infer the existence of an 

ultrafilter with minimal element   .  This ultrafilter contains all co-finite subsets of  .  

Another term for ultrafilter is prime filter.  Thus   is a prime filter and   is a prime ideal.  

Neither   nor   are actual subsets of  F  and  C  respectively; they both stand for 

limits; in a sense   represents the boundary between the finite and infinite subsets of   and 

  represents the boundary between the co-finite and the not-co-finite subsets of  .  The 

Cantor set 2  is partitioned into three “regions”: - 

 

1.     F 2 , the prime ideal of all finite subsets of  .  

2.      C 2 , the prime filter of all co-finite subsets of  .  

Let  FC  denote the Boolean sub-algebra of all finite and co-finite subsets of  ; we 

have        FC F C . 

3.    FC2 , the partition of 2  comprising all infinite subsets of   that are not co-

finite.  I shall call this the boundary set of the Cantor set. 

 

I use the symbol  F  to denote the finite subsets of  ; this is because they can be defined 

on   alone, without regard to its embedding in  .  However, we  have  (given  the  Axiom  of  
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Choice)        F F F  so the three notations are interchangeable.  The cofinite sets 

cannot be defined without regard to   , because they are the sets   V  where  V .  

(Alternatively,  V .)  Hence, we write this set as     C C .  Given the Axiom of Choice 

the two symbols are interchangeable, and unless we have the Axiom of Choice the notion of 

the filter  C  makes no sense at all because we cannot then have the one-point 

compactification of  .  [See 5.3.12] 

 

0

1

2(   )F (  ) 

2(   )C (  ) 




 

 

The ideal   F 2  and filter    C 2  are non-atomic generalised Boolean algebras.  Here 

non-atomic is to a discrete structure as open is to a continuous one (manifold).  Both may be 

completed: this means, to extend and embed  F  in its maximal ideal (prime ideal)   and 

likewise to embed  C  in its maximal filter (ultrafilter)  .  Together   ,  partition the 

Cantor set.  The boundary of the Cantor set is shown in the above diagram as an “open” line 

joining the maximal element (co-atom)   of   to the atom   of  .  The diagram has been 

draw to emphasise the metric relation in the lattice: in the metric the distance of   from 1 is 

one unit, and likewise the distance of   from 0 is one.  The boundary is a huge set in 

comparison to        FC F C , which is an atomless, countably infinite Boolean algebra 

(with 1).  Thus the boundary,    FC2 , is a set of the same cardinality as the Cantor set – in 

other words, of cardinality 02 .  The boundary contains all the infinite sets that are not co-

finite.  For example, the algebra of the Countable collection of prime generated infinite and 

coinfinite sets,  PI , [See 5 / 5.11] is contained in the boundary. 

We are now in a position to clarify the relations of duality in regard to the Stone 

representation theorem.  Conceptually we begin with an attempt to partition the interval   0,1  

by the potentially infinite collection,  .  This creates a locally compact, totally disconnected 

partition, so it is not quite a Boolean space (which must be compact) but almost so.  Ignoring 

this subtle difference for the moment we obtain a generalised Boolean algebra defined upon  it 
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as   F 2 .  This is non-atomic.  If in fact we expand this to the algebra 

       FC F C  we have implicitly already completed the algebra as a whole and added 

the boundary, though, in a sense, we do not know this yet.  It is the Stone representation 

theorem that makes this apparent.  In a Boolean lattice ideals “expand” downwards, as in the 

following diagram: - 

 

0

1

mm m m1 2 3 4

 

 

But for heuristic purposes we may think of the maximal ideals as vertical partitions of the 

Boolean lattice, thus: - 

 

0

1

mm m m1 2 3 4

 

 

The partition constitutes the Stone space, which also acts as the completion of the original 

Boolean space.  The complete Boolean algebra constructed as the field of sets over the original 

Boolean space is dual to the complete Boolean algebra constructed over the Stone space of 

maximal ideals. 
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0 m mm
24 3

m
1 1

{   }{1}{0} {2} {3}0 1

¥

 

 

2.4 (+)  The size of   
 

We have started to identify     , where     under the Axiom of Choice.  That   must be 

an infinite collection is implied by the Stone duality, and illustrated by the above diagram; 

however, the size of   is possibly in question, owing to the following remarks, which are 

derived from Givant and Halmos [2009].  They are discussing canonical extensions: - 

2.5  Size of a canonical extension 
“Suppose A has an infinite number m of elements.  It can be shown that the 

number of ultrafilters in A is between m and 2m .  Each ultrafilter determines, 

and is determined by, a unique atom in the canonical extension, and each 

element in the canonical extension determines, and is determined by, a unique 

set of atoms.  There are therefore as many elements in the canonical extension 

as there are subsets of the set of ultrafilters in A.  Conclusion: the canonical 

extension has between 2m  and 22
m

 elements.” (Givant and Halmos [2009] p. 

197.)1 

                                                           
1 Summary relating to canonical extensions (Givant and Halmos [2009] p. 197.) 

(1) Result: Let X be the set of 2-valued homomorphisms of any Boolean algebra A.  Then A can be 

embedded in  XP .  That makes  XP  an extension of A.  Let the embedding be  :f A XP . 

Properties: - 

1.   XP  is atomic and complete.   

2.   Every element p A  has an image    f p XP . 

3.   Any two distinct atoms  ,q r XP  are separated by some element p A , meaning 

      ,q p r p .  Furthermore, the atoms have the form 

          ,   for distinct 2-valued homomorphisms ,q x r y x y X . 

4.    XP  is compact with respect to A. 

Let E A .  Suppose    sup E q A , then there exists a finite subset F of E such that    sup F q A . 
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The remark places the size of   as between 0  and 02 , so it might be   0
1 2  for aught we 

know.  However, we can see immediately that this is not possible;   is the infimum of all co-

finite sets in  ; it is the last element of the chain          0 , 0,1 , 0,1,2 , ...  ; we cannot 

subtract a set of cardinality 0  from   to obtain a set of cardinality 1  -  this would violate 

the Pigeon-hole principle [See Chap.15 /3.1].  So   is a set of cardinality  .  It remains to 

show that, relative to  , it is already an ordered set.  However,   only exists if we grant the 

Axiom of Choice, which is then available to order  .  Hence    .  We can go further and 

give a complete intensional characterisation of  .  The Stone duality shows that   is 

equivalent to a collection of atoms for the ideal in the dual space of maximal ideals given by 

 MS  where   is the maximal ideal of all finite sets.  A basis for this ideal is the set of all 

co-atoms of the ordinal algebra: - 

              0 , 1 , 2 , ... . 

2.6  The sub-algebra of finite and co-finite sets 
 

[Subalgebras were defined at 5.7.13.]  The theory of ordinals is based on the notion of order-

type, itself inferred from the properties of well-ordered sets.  According to this theory it is 

possible to count up to   but not to count down from it.  For example,   1 , where   

denotes the similarity relation [Chap. 2 / 2.8.2] whereas   1 .  Counting down from   is 

undefined and the expression  1 is meaningless.  Nonetheless, in the theory of ordinals it is 

customary to define the successor ordinal by means of the set union operation:    x x x .  

From this we obtain the sequence of ordinals.  This definition gives a derivative sense to the 

idea of counting down from   - we can form a subset of   by taking the difference between 

  and any finite set; this generates the collection of cofinite subsets of  .  Some examples of 

cofinite sets are: - 

                  0 1,2,3,4,5,... 1 0,2,3,4,5,6... 1,2,5 0,3,4,6,7,...  

                                                                                                                                                                      
(2) Definition, atom separation property: An extension of a Boolean algebra A is said to have the atom 

separation property with respect to A if any two atoms q and r in the extension are separated by some 

element p in A in the sense  ,q p r p . (3) Definition, compactness property: An extension is said to 

have the compactness property with respect to A if whenever a subset E of A has a supremum in the 

extension, say q, that belongs to A, then some finite subset of E has the same supremum.  (4) Definition, 

canonical extension: A complete and atomic Boolean extension of an algebra A that has the atom 

separation and compactness properties is said to be a canonical extension or a perfect extension of A.  (5) 

Theorem: Every Boolean algebra has a canonical extension.  (6) Remark: Every Boolean algebra has a 

complete and atomic extension.  For any given Boolean algebra there is just one canonical extension up to 

isomorphism.  (7) Lemma: If B is a canonical extension of a Boolean algebra A, then the distinct atoms in B 

are precisely the infima of the distinct ultrafilters in A.  (8) Remark: The set of atoms in B is in bijective 

correspondence with the set of ultrafilters in A.  (9) Theorem: Any two canonical extensions of a Boolean 

algebra A are isomorphic via a mapping that is the identity on A. (10) Remark: A finite Boolean algebra is 

its own canonical extension and there is no increase in size. 
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Such sets can be recursively enumerated; evidently, they are all infinite collections.  Hence, at 

one “end” of the lattice    0,12  we have the finite sets, which form the collection of all 

finite sets, and at the other end we have the collection of all cofinite sets.  Unions of finite sets 

correspond to intersections of co-finite sets; for example: - 

                         1 2 1,2 1 2 1,2 0,2,3,4,... 0,1,3,4,... 0,3,4,5...  

In addition to the regions of finite and co-finite sets, there is also a region between both of 

these that comprises sets that are infinite but not cofinite.  I call this region the boundary.    

When we descend from infinity by deleting finite numbers of elements we never reach a set of 

non-infinite cardinality.  When we ascend from a finite set by adding a finite number of 

elements we never reach beyond a set of finite cardinality.  The two processes cannot meet in 

the middle, so the structure is incomplete.  

2.7  Example 

Let  FC  be the field of sets of all finite and cofinite sets of positive integers.  

 FC  is a subfield of the field of sets    P 2 .  Let C be the set of all 

singletons of the form  n  where n is a positive integer. 

1. The join of C in  P  is      0 1,2,3,... . 

2. The join of C in  FC  is   since      0 FC . 

In this case there does exist a supremum for the subset C in B, but there is 

another element not contained in B that could also act as this supremum if B 

were complete.  Here we see that the join of a set in the field of sets is not 

necessarily the union.  The join of a set in one Boolean algebra is not necessarily 

the same as the join in another.  Strictly we should show that join is relative to 

the given algebra B and write 

B

x A
x .  In this case the join of C does exist in 

 B FC  because the set   is a unique join (joins must be unique).   

2.8  Result, interval algebra 
Let A be the interval algebra of the real numbers, and let E be the subset of A 

consisting of all intervals  , 1n n , where n ranges over the integers.  The 

subalgebra A generated by E is isomorphic to the field of finite and cofinite sets 

of integers. (Givant and Halmos [2009] p. 102) 

2.9  The countable collection of prime generated infinite and cofinite sets 
 

Countable collection of prime generated infinite and coinfinite sets ,  PI , was introduced at 

5.5.11.  It comprises only sets that belong to the boundary; one such is the actually infinite 

complete set of all even numbers: - 
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           2 2,4,6,8,... : 2  for some x x n n  

This is not cofinite because we could never reach this set by either (a) adding a finite number 

of elements to a finite set, or (b) removing from   a finite number of elements; so it must 

always differ from any finite or cofinite set by an infinite number of members – this being an 

aspect of the property of infinity known as its inexhaustibility.  Other infinite yet not cofinite 

sets include: - 

     
   

                                
                   0 1

1 1,2,3,... 6 2 3 0,6,12, ... 30 6 5 0,30,60, ...

2 6 2,4,8,10, ... 30 6 6,12,18,24, ...y y
 

Here     0 1 0 1y y y y  and                   1 2 1 2 1 .  This illustrates the result that the set 

of all infinite but not cofinite subsets of   is a Boolean algebra in its own right.  Although   6  

lies in the filter generated by   2  no addition of any finite number of elements to   2  will 

suffice to construct   6 ; we can in fact only reach one infinite (not cofinite) subset of   from 

another by an infinite “limiting” process.  So each infinite (not cofinite) subset of   is itself an 

isomorphic copy of the set of all finite subsets of  .   

2.10  Example 

Let  FC  be the Boolean algebra of all finite and cofinite subsets of  .  Let 

 2  be the set of all sets of the form 2n  where n .  Then there is no join of 

 2  in  FC . 

 Proof 

Suppose that there is a join  u FC .  Then 
 

 
2x

u x , and u would 

have to contain all positive even integers.  Since u is also co-finite it 

must all but finitely many positive integers.  Then any proper subset of 

u that is obtained by removing an odd integer would also be an upper 

bound for  2 .  This contradicts the assumption that u is the least 

upper bound of  2 .   

 

The join must be an infinite but not co-finite subset of  .  It contains nothing but even 

numbers and is actually infinite:    2 2,4,6,... .  This illustrates that  FC  is not complete. 

3 The Cantor set 
 

The Cantor set occupies a unique mid-position between our two conceptions of infinite 

analytic logic.  On the one hand it is the maximal structure of the analytic logic of   and is the 

Boolean lattice over which that logic is built; on the other hand it is a necessary subspace of 

the continuum and therefore a fundamental sub-structure over which the analytic logic of the 

continuum is constructed. 
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3.1  (+)  Aside, the analytic logic of the continuum 
There appears to be an analytic logic of the continuum that is not expressed, for 

instance, in the formal analytic logic of the predicate calculus.  Analytic logic is 

based on the fundamental idea of containment.  The predicate logic interprets 

this principle by means of an analysis of the continuum into a discrete skeleton 

of   parts over which a lattice is constructed and on top of that analytic logic is 

built.  But there are analytic relations in the continuum not encompassed or 

seen by this logic. 

3.2  Iterative definition of the Cantor set 
Because of this construction the Cantor set is also known as the Cantor ternary 

set, and also designated  3SVC , denoting a Smith-Voltarra-Cantor set.2   Let 

   1 0,1F .  Remove from this the middle open third, that is the interval 
 
 
 

1 2
,

3 3
, 

to obtain 
          

2

1 2
0, ,1

3 3
F .  Remove from each part of this its middle open 

third, to obtain 
                         

2

1 2 1 2 7 8
0, , , 1

9 9 3 3 9 9
F .  Iterate this process to 

obtain a sequence of closed sets nF  each of which contains all of its successors.  

Define the Cantor set by  


 1 nn

F2 .  This is a closed set.  F contains all the 

points that remain after all the open intervals in the sequence 

     
     
     

1 2 1 2 7 8
, , , , , , ...

3 3 9 9 9 9
 have been removed.  It therefore contains all the end-

points of these intervals, 
1 2 1 2 7 8

0, 1, , , , , , ,...
3 3 9 9 9 9

.  It can be shown that the 

Cantor set “contains a multitude of points other than the above end-points, for 

the set of these end-points is clearly countable, while the cardinal number of F 

itself is c, the cardinal number of the continuum.” (Simmons [1963] p. 67.) 

                                                           
2 Smith-Volterra-Cantor sets: These are examples of perfect, nowhere dense sets.  The first construction 

was by Smith in 1875, the second by Volterra in 1881, but they only became widely known after Cantor 

rediscovered the construction in 1883.  They will be abbreviated as SVC sets.  (1) The general construction 

of SVC sets: The Cantor set is an example of a Smith-Voterra-Cantor set, denoted SVC sets.  SVC sets are 

constructed by starting with a closed interval and then removing an open subinterval; then from the 

remaining subintervals another open subinterval is removed; the process is iterated indefinitely.  The SVC 

set is the intersection of the countably infinite collection of sets that remain after each iteration.  (2) The 

Cantor set as an SVC set: Cantor’s ternary set belongs to a family of SVC sets such that at the kth 

iteration, an open interval of length 
1

kn
 is removed from the centre of each remaining closed interval.  

The resulting set may be denoted    where 3SVC n n .  Cantor’s ternary set is  3SVC .  In the ternary 

construction for  3SVC  if we replace the 3 in this expression by a 4 we obtain  4SVC . 
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3.3  The puzzle of the Cantor set 
This remark by Simmons is indicative of a significant puzzle when we consider 

the Cantor set.  The members of this set are all enclosed within intervals of zero 

measure, whose endpoints are a set of cardinality 0 ; nonetheless the 

cardinality of the members of the Cantor set is 02 .  How is it possible for 02  

points to be enclosed in 0  intervals? 

3.4  Result, ternary representation of an element of the Cantor set 
The elements of the Cantor ternary set are those numbers that can be written in 

base 3 without using the digit 1. 

Proof 

Consider the base 3 expansion of numbers between 0 and 1.  This expansion 

uses only the digits 0, 1 and 2.   

Example 

  3 2

2 1 7
0.21

3 3 9
 

Call such a base 3 representation of a fraction a ternary fraction.  Observe also 

that any finite ternary fraction can be written as infinite ternary fraction with 

repeating 2s.  For example, the ternary fractions 

 3 3 3 30.1 0.0222... 0.01 0.00222...  

Now consider the construction of the Cantor set. 

Iterate Remove  Removed as an infinite  What is left as an 

infinite   ternary fraction*   ternary fraction 

1 
 
 
 

1 2
,

3 3
   0.1000...   to  0.111...   

0.000... to 0.0222...

0.2000...  to  0.222...
 

2 
      
   

1 2 7 8
, ,

9 9 9 9
 
 
 
0.01000...   to  0.01111...

0.21000...   to  0.2111...

 

0.000...  to  0.00222...

0.02000...  to  0.0222...

0.2000...  to  0.20222...

0.22000...  to  0.2222...

 

Note 

* 0.1 is not removed.  That is why I have put it in brackets.  What is removed is 

the open interval from 0.1 to 0.111... etc.  We see that at every iteration the 

ternary fractions that we remove are those that as infinite (but not finite) ternary 

fractions contain a 1, and those that are left are those that as finite or infinite 

ternary fractions use only the digits 0 and 2.  After a countably infinite number 

of iterations we have as the elements of the Cantor set only those numbers that 

can be written in base 3 as infinite ternary fractions without using the digit 1. 
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3.5  Example 

The fraction 
1

4
 is contained in the Cantor set and yet is not an end-point of any 

closed interval in it.  To show this, observe that: - 

         


3 2 4 9

2 2 2 2 1 2 9 1
0.020202 ...

13 3 3 9 9 8 41 9

.3 

 

By examination of the iterative process above we see that the end-points of any closed interval 

in the Cantor set terminate in strings of the form: - 

0000...  or  2000....  or 2222 

The first case only occurs in the case of 0 0.000...  .  Thus any infinite ternary fraction that 

can be written with 0 and 2s that recur in any other pattern is an element contained in the 

Cantor set, but not identical to an end point of any closed interval in the Cantor set.  This 

example illustrates the puzzle of the Cantor set.  [3.3 above] 

3.6  Result, canonical representation of the Cantor set, the Devil’s staircase 
Let x be an element in the Cantor set.  Take the base 3 expansion of x.  Convert 

each 2 in that expansion to a 1 and then read the number as a base 2 number.  

This function is said to be the Devil’s Staircase, also called the Lebesgue singular 

function and maps all of C onto   0,1 . 

Example 

        
   

3 2

2 1
0.2 0.1

3 2
 

Thus the canonical representation of the Cantor set is the set    0,12 . The set 

0,1  is equinumerous with the Cantor set.  There are c many points in the 

Cantor set. 

Proof 

The Cantor construction starts with an interval    0,1I  with end points 

  0,1x .  At the first iteration this is subdivided into closed and open sets with 

end points: 

                    
         

0 1 0 11 1
0,1,2,3 , , ,

3 3 0 0 1 1
. 

At the second iteration this is further subdivided into closed and open intervals 

with end points: - 

                                                           
3 This uses a geometric series 
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 

     
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And so on.  So any such binary sequence may be mapped to a real number by: - 
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This displays the isomorphism of the set of reals to the end-points of the Cantor 

set, and any SVC set [Defined, footnote 2 above].  However, in the Cantor set 

certain intervals are designated as in the set and certain intervals are designated 

as not in the set.  When n is finite, each interval that is in the set is designated 

by two finite binary sequences.  For example, the first interval at the 2nd iteration 

is: - 

    
                      

0 1
0 1 1

, 0 , 0
9 9 9

0 0

 

But in the limit as n  the two adjacent end-point sequences converge on a 

unique single real number with a single binary representation.  Each of these 

points is in he Cantor set.  So the mapping is a mapping of the Cantor set onto 

the reals.  Each interval in the Cantor set is identified with a unique real number. 

  

0 1

0 0

0 0 0 0

1 1

1 1 1 1

0 2

0 0

0 0 0 0

2 2

2 2 2 2



BINARYREPRESENTATION OF ATERNARY REPRESENTATION OF THE

CANTOR SET REAL NUMBER

 

3.7  The puzzle 
 

The Cantor set contains continuum many, c, additional points that are not its end points.  [See 

Chap. 2 / 2.7.10.]  We have seen that that 
1

4
2  is one such point.  It may be noted, that 

whilst the Cantor set contains c many points, the length of the segment removed is equal to 1, 

since    
1 2 4

... 1
3 9 27

.  Conversely, when we remove the Cantor set from the interval    0,1I  

we remove a set with c many points but leave an interval of length    1 0,1  behind.  
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Diagram of the Devil’s staircase 
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The end-points of the Cantor set are given on the left, and the elements of 2  are given on the 

right.  It is said that there are 0  points in the left tree and   02 2  in the right tree.  This 

appears to be a paradox.  That there are 0  points on the left is argued that there are 

countably infinite branches, each designating an end-point.  That there are 02  points on the 

right is argued by the claim that it is the power set of   0,12 .   

 3.8  Resolution of this paradox 
 

The resolution is that the number and length of the branches on the left is not   but  ; on 

the right it is  .  So there are many more points on the right than on the left.  This gives an 

injection of the set of end-points with the set 2 .  The end points are generated by     

iterations and the points themselves are generated by   iterations.  The result of both 

limiting processes is the same – to produce closed sets of zero measure. 

 3.9 (+)  Theorem,     
 We have just demonstrated    .   

  Proof 

By contradiction.  Assume    , then the number of iterations in the 

construction of the end-points of the Cantor set is equal to the number 

of iterations in the construction of the Cantor set itself.  This implies 

       
 0,1 0,1 2 2 , whence   0

0 2 . 

 

What this illustrates is that the distinction between   and  is essential to mathematics and 

is everywhere implicit.  It shows up, for instance, in the distinction between   and  , the 

latter marking the disguised presence of  .  The Cantor set is defined by an actual, 

completed construction, and is the product:   
 0,12 ; the end-points of the Cantor set in the 

ternary construction are defined by a recursive (inductive) procedure over the unbounded, 

potentially infinite collection  , and hence may be written 2  which  makes  the  set  of  end 
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points into the sub-direct product of an indeterminate but countably infinite number of copies 

of   0,12 .  Equating the two leads to paradox.  This solution is also reflected in set theory in 

the distinction between ordinal and cardinal exponentiation 

3.10  Examples of ordinal multiplication 
Ordinal mulitplication is based on the concept of order types. 

1.   2  (ordinal multiplication) . 

2  is ordered by 0,0 , 1,0 , 0,1 , 1,1 , ...  which is order-isomorphic 

to  . 

2,     2  (ordinal multiplication). 

 2  is ordered by 0,0 , 1,0 , 2,0 , ... ; 0,0 , 0,1 , 0,2 , ...  which is 

order-isomorphic to   . 

3.11  Ordinal exponentiation is not the same as cardinal exponentiation 
Cardinal arithmetic is concerned with the operations of union, Cartesian 

product and YX , the class of all functions from Y into X.  Therefore, ordinal 

exponentiation   exp , , in spite of the ambiguous notation, has nothing to do 

with the operation of forming YX .  Thus, for example: 

Ordinal exponentiation    exp 2,  

Cardinal exponentiation   2  

 

Regarding    exp 2, 2  (ordinal exponentiation).  This proceeds by induction: - 

 

 



 
  

  
  

 

    

  

  

1

1

For all ,

2

n n

n n
 

 

In set theory ordinal exponentiation is extended by definition to transfinite ordinals.  The 

ordinal exponent 2  (note, not bold type) should perhaps be better written 2 .  It is a 

potentially infinite collection equinumerous to  . 

3.12  Cantor space 
 

There is a good deal more that can be said about the Cantor set and the Cantor space with 

which it is synonymous.  This material is extraneous to our purpose here – which is to 

examine the validity of Poincaré’s thesis.  I note in passing, Brower’s theorem: A topological 

space  is  a  Cantor  space  iff   it is  non-empty,   perfect,  compact,  totally  disconnected  and  
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metrizable.  Explication of this result takes us too far from our subject, which requires only 

examination of the Cantor set as the essential model of formal, analytic logic, and provides us 

with a vehicle to demonstrate the validity of the thesis that complete induction is not a 

principle of analytic reasoning. 

 

4 The model of the Cantor set 
 

It will be useful to be able to visualise the structure of the Cantor set indicated by the 

preceding sections and the Stone duality in particular.  Recall that our base partition is of the 

real line into actually    parts, each of which is an atom.  This generates the Cantor space 

2  as the Boolean lattice over which the analytical logic of   partitions is constructed.  Each 

atom corresponds to a proposition   0 1 2, , , ...  each of which, in turn, corresponds to a 

partition of the finite space   0,1 .  Recall that it is an assumption of this model that there is 

an actually infinite partition of a finite space,        0,1  and this partition has 

   segments.  We may represent the partitions by singleton sets:      0 , 1 , 2 , ...  and the 

correspondence gives          0 1 20 , 1 , 2 , ... .  Imagine a tape divided into segments, 

and imagine that each segment corresponds to an atom with its corresponding label. 

 

{0} {1}
{2}

{3}

{4} {5}
{6}

 

 

Under the hypothesis of an infinite division of   0,1  into   parts, this is a finite and bounded 

piece of tape with  , infinite, segments, each corresponding to an atomic proposition in the 

logic.  Let the tape be inscribed with the symbol 0 or 1 according to whether the singleton set 

 n  is a subset of a given subset of  ; alternatively, the segment  n  of the tape is inscribed 

with a 1 iff n S  for a given subset S .  For example, the finite subset of  ,  1,2,5  

corresponds to the tape inscription: - 

 

{0} {1}
{2}

{3}
{4} {5}

{6}

1
1

1
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This corresponds to the lattice point of 2  given by  1,2,5  and corresponds to the 

proposition    1 2 5 .   Here there are certain segments of the front of the tape that are 

undetermined.  Suppose we fill in all the remaining segments with 0s. 

 

{0} {1}
{2}

{3}
{4} {5}

{6}

0 1

0

0
0

1

1

 

 

This is not the same as       1 2 51,2,5 , because in it we have definite negations.  It 

corresponds rather to                 0 1 2 3 4 5 6 ...  which is an infinite assignment 

of values to the front of the tape. 

From   0 0  I may infer   0 0 n  for any n by the rule for  -introduction, which 

is the rule of dilution of information.  From   0 0  alone (without other negations), I may 

infer   0  , which represents total dilution of the information contained in the atom 

  0 0 .  But I may not infer  0 0  because this is inconsistent.  So if   0 1 true  then 

  0 0 false .  If I inscribe a 1 on any segment on the front of the tape I must 

correspondingly inscribe a 0 on the back of the tape; where the front of the tape is 

undetermined, so too is the back.  If a segment on the front of the tape corresponds to  n  

and this is determined and we have    1 truen , then nothing else is determined (by this 

assignment alone) except that we cannot have    n , for this is a contradiction.  Therefore, if 

a segment on the front of the tape represents  n  then the segment on the back of the tape 

represents    n .  Hence, the front of the tape represents finite singleton sets (atoms) and 

the back of the tape represents finite co-singleton sets (co-atoms); if we have    nn  on the 

front then we have           nn n  on the back; this may also be marked using the 

symbol for the complement    n n .  By combinations (unions) of singleton or co-singleton 

sets whose truths are represented by the front and back of the tape respectively, we see that 

the front of the tape collectively contains the set of all finite subsets of   and the back of the 

tape contains the set of all co-finite subsets of  .   
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{0} {1}
{2}

{3}
{4}

{5}
{6}

{0}
{1}

{2}
{3}

{4}

 

 

But since the tape contains an infinite partition of   segments, assignments of 1s and 0s to 

all of these segments must also define those infinite subsets of   that are not co-finite sets or 

intersections of co-finite sets; that is, the sets that belong to the boundary.   

The issue of the boundary is problematic.  So far as any segment of the tape is 

concerned, although there are infinite segments there is no actual segment of the tape that 

cannot be reached from 0 by a finite number of steps (counting up).  This must follow from 

the fact that every member n  is finite, and from the definition of   as the first infinite 

ordinal.  Viewed from the 0 end of the tape, the region “close to” 1 (its neighbourhood) appears 

as an infinitesimally small gap that is (a) inaccessible from the 0 end, and (b) contains an 

infinite collection of segments.  This corresponds in our model to the distinction between   

and             .  Suppose from the 0 end one thinks one has identified a 

segment that is definitely within this inaccessible gap, then it is immediately discovered that 

this segment is accessible after all; no segment of the tape is actually inaccessible once it is 

determined to just which n  it corresponds; whenever an “observer” starting at 0 moves 

towards the gap, the gap appears to “shrink” away from that observer, and yet there always 

appears to be a gap that contain an infinite collection of inaccessible numbers.  The picture is 

reversed from the 1 end of the tape.  All of this follows from the observation that the 

underlying space defined by the segments of the tape is totally disconnected, so the 

neighbourhood of 1 is totally disconnected from the neighbourhood of 0 and appears to be an 

infinite distance from it, where distance is given by the metric defined by the number of 

segments separating any two segments. Between the neighbourhood of 0 and the 

neighbourhood of 1 there is a boundary that is corresponds to a boundary between the finite 

and infinite subsets of  .  I shall mark this boundary by   .  It is a concept of an 

indeterminate separation between the finite and the infinite.  In any physical application it can 

never actually be located, and any attempt to locate it immediately forces one to conclude that 

it lies somewhere else.  Being indeterminate    cannot be a set, for sets are determinate, 

definite multiplicities.  [Chap.2 / 1.3.1]  In the lattice generated by all subsets of  , that is the 

Cantor space, 2  there is a correspondent boundary between the collection of all finite 

subsets of   and the collection of all subsets of  , finite or infinite.  The collection of all 

finite subsets of   is denoted by    F 2 ; which we have seen is an ideal within 2 .  
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But the space   0,1  under the infinite, actual division into   parts is totally separated, 

which is as much as to say that every segment whatsoever is separated from every other by a 

boundary, so that an observer located at segment    00  perceives that every segment lies 

in a neighbourhood that could be interpreted as appearing to be an infinite distance away 

being separated by a boundary that cannot be reached.  This follows immediately if we adopt 

the principle that the only atoms that can be reached from any given atom    nn  are those 

to which this atom is connected.  Then each    nn  is connected only to itself.  (A topological 

space X is said to be totally disconnected if the only connected subsets in X are the one-point 

sets, and Brower’s theorem that states that the Cantor set, 2 , is totally disconnected. [3.12 

above]  The Cantor set inherits its totally disconnection from the partition of the underlying 

space which is also totally disconnected.)  Consequently, there is a boundary separating any 

atom from every other atom. 

4.1 (+)  A principle of complementarity  
 
We operate with simultaneously with two models that are not formally inconsistent with each 

other and represent different interpretations of the same underlying concept of an actually 

infinite partition of the real line   0,1  into   totally disconnected atoms.  The validity of this 

principle was demonstrated above [Section 2.3 – Partition of the Cantor set] where the 

following diagram was constructed on the basis of the Stone duality: - 

 

0 m mm
24 3

m
1 1

{   }{1}{0} {2} {3}0 1

¥

 

 

 

We see that from the perspective of 0, the interval   0,1  is divided into two regions: - 
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1. Firstly, a region marked   which comprises an unordered anti-chain of 

all the natural numbers  .  Each member of this region is an atom of 

the interval and lies at a distance of 1 unit in the metric from 0 when it 

is identified with the 0 of the Boolean lattice constructed over the 

partition. 

2. Then there is a region marked   which is also an atom in the algebra at 

a distance 1 unit from 0 and perceived from 0 to be the well-ordered 

chain,  , on which complete induction is defined.   

 

The region marked   is not an atom of the interval, but the collection of all the atoms 

excepting that one marked by  .  Hence, while   may be regarded as an atom, from the 

perspective of 0,   is not an atom.  Under the Axiom of Choice, which also calls   into 

existence,   may be regarded as a set that is a different description of the same collection as 

 .  We write    .  The two complementary models are: - 

 

1. Every neighbourhood is separated from every other by a boundary that 

divides each into disjoint neighbourhoods so that the one cannot be 

reached from the other by any finite number of steps from atom to 

atom, but can be reached by a path of infinite discrete steps from atom 

to atom.  This latter property follows from the principle that the line 

joining the two neighbourhoods can be partitioned into an actually 

infinite number,  , of atoms. I shall call this model 1. 

2. Every atom as just one step away from every other atom.  I shall call 

this model 2. 

0 1

0 1/2 1/4 1/8

{0}

1 step in model 2

steps in model 1

0 1

neighbourhood
of 1 shrunk to

 - that which 
is infinitessimally
distant from 1 and
less than 1 atom
from 1

d

The neighbourhood of 0 contains 
everything that can be reached in
a countable number of steps

is not
in the
neighbourhood
of 0

0 1

MODEL 1

MODEL 2

The neighbourhood of 0 contains the neighbourhood of 1
.  The two neighbourhoods interpenetrate

one another, because both are just 1 step from the other.
and conversely

{1} {2}

 

 Chap. 6 ] THE MODEL OF THE CANTOR SET [ Sec. 4 



© Peter Fekete] 173 [ 06 Oct. 2011 

 

4.2 (+)  Inverse steps between neighbourhoods 

The segment  n  is said to be n-steps away from the segment  0  in the metric 

defined on the neighbourhood of 0.  This metric is equivalent to counting the 

number of atoms that separate two atoms.  The neighbourhood of 1 is also one 

step away from the neighbourhood of 0, and the neighbourhoods are said to be 

separated by one atom or at a distance of one atom.  I denote the step from the 

neighbourhood of 0 to the neighbourhood of 1 by  ; conversely, the step from 

the neighbourhood of 1 to the neighbourhood of 0 shall be denoted  .  These 

steps are inverses of each other, so   1 . 

4.4 (+)  Two-sided sheet of paper model of Cantor space 
One might argue at this point that the intuitive concept of a neighbourhood 

expressed in the above diagram is inconsistent and therefore false, but this is 

simply not true: certainly we can demonstrate the consistency of the concept by 

providing a physical model of this situation – that of two sides of one sheet of 

paper.  On one side we have the neighbourhood of 0 and on the other the 

neighbourhood of 1: - 

 

0

1





1 step

1 step

neighbourhood of 1

neighbourhood of 0  

 

The model provided above provides some problems for point-set topology, but it is consistent 

in perceptual space.  Let us image that both sheets of paper are infinite is size – that is 

isomorphic to Euclidean 2-space.  Then we may say that the neighbourhood of 0 is contained 

in the neighbourhood of 1 and conversely, and yet the two neighbourhoods are not identical, 

because one side of a sheet of paper is not identical with the other.  This situation contradicts 

the Schröder-Bernstein theorem.  [Chap 2/2.7.5]  However, as the two-sided sheet is a model of 

Cantor space, which is defined in point-set topology, it is not inconsistent with it. 

The two sides of the sheet are isomorphic to 2E  and represent closed and bounded 

sets within themselves: 2E  as a subset of itself is closed.  However, they are both open at the 

boundary between the two sides, which is not an additional side or set, since if it were there 

would be a boundary between the boundaries and so on ad infinitum (infinite regress).  

Therefore,  the neighbourhood of 1 closes the neighbourhood of 0 and conversely.  It is its one 
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point compactification The neighbourhood of 1 is the closure and boundary of the 

neighbourhood of 0 and conversely and acts as its one-point compactifcation.  [5.3.9 et seq.] 

The mention of 2E  is as a heuristic only.  In the context I am discussing the 

neighbourhood of 0 and 1 comprises a real line 0,1  and  0,1  respectively.  This is 

isomorphic to the manifold  .  Over this manifold a scaffold (or skeleton) of     atoms is 

erected.  2E  helps us to visualise the relation that a straight line has two sides separated by a 

boundary.  The lines have no thickness, but yet can be represented as point sets; the boundary 

has no size and is incommensurable with the two sides of the line, so cannot be represented as a 

point set.  We can iterate the construction to create many sides and many boundaries; for 

example, addition of the neighbourhood of 2; however, the pairing of the two neighbourhoods 

is the essential structure from which the multiples would be constructed, at least so far as this 

context requires. 

Under the principle of complementarity the neighbourhood of 0 comprises both 0,1  

and   0,1  simultaneously.  The steps   and   may now be regarded as operations.  The 

boundary cannot be separated from a side, even if the two sides can be so separated by a 

boundary.  What this means is that   adds the boundary of  0,1  and the whole of  0,1  (the 

neighbourhood of 1) to 0,1  (the neighbourhood of 0) and conversely for  . 

4.5 (+)  Representations of the neighbourhood of 0 

  0,1  The neighbourhood of 0 comprises the whole space. 

1 is a member of the neighbourhood of 0.  It is 1 step away from 0.  

Every point in the neighbourhood of 0 can be reached in one step.  The 

neighbourhood of 0 contains the neighbourhood of 1. 

0,1  The neighbourhood of 0 comprises every point that can be reached in a 

countable number of steps in accordance with the scaffold.  1 is   

steps away and cannot be reached in 1 step.  In this model the 

neighbourhood of 0 does not contain the neighbourhood of 1 as a 

subset. 

 0  The neighbourhood of 0 is everything that is less than one atom away 

from 0.     0 0,1  - the neighbourhood of 0 and the neighbourhood 

of 1 are disjoint. 

    The boundary of 0,1 . 

    The boundary of  0,1 . 
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4.6 (+)  Sizes of neighbourhoods 

The size of the scaffold (skeleton) of   0,1  is  . Since 0,1  is a proper subset of   0,1  its 

scaffold must have a size smaller than  .  However, the size of this scaffold is larger than any 

finite number, although it is a finite number.  It is a finite number larger than any finite 

number.  Let us denote this number   .  This number is a limit point between the finite and 

the infinite, and is not a natural number.  It is not a real number either.  It is an indeterminate 

number corresponding to the boundary between the finite and infinite partition of   0,1 .4  All 

of this is consistent with the one-point compactification:       . 

4.7 (+) Principle of symmetry 
 
The assumption we are working under is of an infinite division of the line segment   0,1  into 

actually   indivisible pieces of information, or atoms.  Counting these pieces of information 

(atoms) from 0 we reach 1 after   steps, but it is impossible to determine the last countable 

number prior to reaching  , which is undefined.  Nonetheless, we may also reverse the 

picture, and starting at 1 count the   piece of information towards 0.  This follows by 

symmetry.  This principle of symmetry follows from the Stone duality. 

 

0 1

{1} {2}{0}

steps counting up

{0}{1}{2}

10

steps counting down

10 2 1 02

atoms

boundary

co-atoms

determinate

10 2 1 02

finite

co-finite

indeterminate

indeterminate

finite interval with infinite atoms

determinate

apparent boundary(   )

 

                                                           
4 Conjecture: I add the following conjecture, which I acknowledge I have not analysed further and may be 

sheer nonsense.  The location of    in any given interval  0,1  is indeterminate.  I conjecture firstly, that 

whenever we measure a particle located in this interval we give    a temporary determination and that 

this temporary determination of the locus of the particle follows a probability distribution.  I suggest that 

indeterminacy principles in physical applications may owe their origin to our system of determination of 

measure and coordinates rather than to properties inherent in their physical nature. 
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Any assignment of information (atoms) while counting up forces an assignment of 

information while counting down; so these two models are two models of the same 

information; they both represent the same partition of the interval   0,1 .  Atoms that are a 

finite number of steps away from 0 are members of the neighbourhood of 0; and likewise, 

those atoms that are a finite number of steps away from 1 are members of the neighbourhood 

of 1.   

4.8  The Möbius band model 
 

The model of two sides of a sheet of paper in 2E  or a double-sided line is really only a picture 

of what I called “model 1” above – showing the neighbourhoods of 0 and 1 as disjoint and that 

1 cannot be reached by a path of   steps in the neighbourhood of 0 though it can be reached 

by a single “jump” of length 1.  We seek a representation that combines both models of the 

neighbourhood.  In this case we must incorporate the idea in “model 2” that 1 can be reached 

from 0 in   steps as well as by a single jump.  To achieve this we must connect the two 

neighbourhoods at both ends. 

 

0

1





neighbourhood of 1

neighbourhood of 0  

 

In terms of our counting up and counting down we obtain the following: - 

 

0

1
"behind"

neighbourhood of 1

neighbourhood of 0
"in front"

traverse in  steps to the "other side"
which is the neighbourhood of 1


{0} {1}

{2}

{0}
{1}

{2}

Counting up

Counting down

"in front" - singleton sets representing
atoms of the neighbourhood of 0.

"behind" - co-singleton sets (co-atoms)
of the neighbourhood of 0

"behind" - singleton sets (atoms)
of the neighbourhood of 1

"in front" - co-singleton sets
(co-atoms) of the neighbourhood of 1  
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The result is not a cylinder because in model 2, the neighbourhood of 1 lies on the same side 

of the sheet of line (or sheet) as 0; therefore, the two sheets must be joined into a Möbius 

band, so we have a sheet of one face (side) only.  Although the Möbius band is said to have 

only one face, a continuous one-sided curve from 0 back to 0 (passing through the 

neighbourhood of 1) makes two “loops”.  One loop is shown in thicker dots in the diagram. 

4.9 (+)  The Klein bottle model 
 
If we allow ourselves to “write” on the “back” of the surface we can cut the Möbius band into 

two one-sided surfaces connected at a boundary, which is its edge.  The canonical diagrams 

[Chapter 2 / 2.11.1 and Blackett [1982] Chapter 1] of the Möbius band are: - 

a

c

b

ad

c

a
d d

b  

 

Which have equivalent algebraic edge equations 

 1 1abac    1dde  

Inserting 0 and 1 as vertices into these diagrams gives 

 

a

c

b

ad

c

a

d

d

b
0

1 1

0 0

0

0



neighbourhood of 0

neighbourhood of 1

1

1

1

 

 

If in fact we cut a physical model of a Möbius band along the diagonal edge d as indicated in 

the diagram, then we obtain a triangular piece of material (paper) that is two-sided.  The 

identification of the edges means that the two sides are identified and one side is continuous 

with the other in two directions.  However, in the diagram above the vertices representing 1 

are on the other side of the sheet to the vertices representing 0.  The boundary edge here 

indicated by d may be subdivided into two parts – one part running from 0 to 1 lying on the 

“front” side of the sheet as it faces us and the second part lying on the “back” side. 

 

c

a

d

d

b
0

0

0


1

1

1
1

d

1

2

d2

"behind"

"before"
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These are paths of   steps that lie in the interiors of the respective neighbourhoods.  The 

path 1d , for instance, lies wholly in the neighbourhood of 0.  In this sense 1 is on the same 

side as 0.  However, since both neighbourhoods interpenetrate each other both 1d  and 2d  lie 

on both sides of the sheets – they are two sided lines.  On the other hand, the path labelled  , 

displays the point 1 as in a disjoint neighbourhood to that of 0 requiring a one-step jump to 

the other side. 

 

d

d

0

0

0


1 1

e

d

d

0

0

0


1

1

1

neighbourhood of 0 neighbourhood of 1

e1

 

 

The direction of the arrows is reversed in the right-hand diagram because we have to take the 

sense (clockwise/anticlockwise) of the direction of the arrows.  They are mirror images of each 

other. 

 

d

d

0

0

0


1 1

neighbourhood of 0

neighbourhood of 1

e1

d

d

d

d

0

0

0


1 1

neighbourhood of 0

neighbourhood of 1

e1

d

d

0

 

0  

 

This has algebraic edge equation: - 

  1 1 1ddd d  

which reduces to: - 

 


1 1

1 1

dd  

 

This does not define an allowable two-dimensional surface.  However, this is because it is a 

model of a one-dimensional line or interval    0,1 .     It does allow us to visualise the notion of  
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interpenetrating neighbourhoods, and the equation 1 1  shows that it is a consistent model 

of the unit interval.  The above pictures are merely illustrations, and strictly there are no 

points in the space marked by the jumps   and  , so the fact that the diagram strictly 

“collapses” to 1 1  is to be expected.  Nonetheless, if we mark the edges d in the above 

diagram to indicate whether they lie in the neighbourhood of 0 or the neighbourhood of 1, we 

obtain the edge equation   1 1 1dde e , which is the edge equation of the Klein bottle.  The 

Klein bottle is a model of the interpenetrating neighbourhoods of 0 and 1.  The diagram also 

shows that   and   are inverses of each other. 

 

 

 

As with the Möbius strip, a Klein bottle may have just one surface, but at any point the glass 

or substance from which it is made has a thickness and so each point on the surface is 

immediately associated with another point on the surface, and these two points form 

neighbourhoods that as “opposite” associates of the surface are disjoint, and yet may be 

connected by a continuous path.  The material between the two “associates” is the boundary.    

Shrinking the boundary in the model to no dimension is equivalent to equating d with e in the 

edge equation   1 1 1dde e .  This contracts the bottle to a single point.  The disjoining of the 

associates is essential to the structure of the Klein bottle. 

The connection from 0 to 1 on the Klein bottle, equivalent to taking one turn about 

the surface to arrive at the associated “opposite” side, so these are equivalent to paths of 

infinite length.  Either we must allow the Klein bottle to be made of a sheet of infinite size, or 

we must surround each associate with a boundary representing the limit of the process of 

taking   steps.  So whether we “jump” from one “side” to the other, or pass continuously 

along the surface, we can only reach the one associate point from its pair by taking a limit. 

 

10

neighbourhood of 1

neighbourhood of 0

( ) steps





1 step "jump"
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A point set has a dimension; for example, the interval   0,1  is one-dimensional.  But if I take 

any real surface, for instance, that surface always has two sides.  Now this concept of two 

sided figures does appear in algebraic topology in the distinction between orientable and non-

orientable surfaces – the cylinder is 2-sided and orientable, whereas the Möbius band is 1-

sided and non-orientable.  But any point set describing the cylinder is a mapping from a 1-

sided sheet of paper to a surface wherein the two-sided nature is not indicated.  (In 

differential geometry a Monge patch always begins with a sheet and models a given surface as 

the image of that sheet, so the two-sided nature of a surface is never encoded.  Whether a 

surface is orientable or not is not a property of two-sidedness but a global property of how 

the edges of a surface are connected.  Even the paper from which one makes the “one-sided” 

and non-orientable Möbius strip begins as a two-sided sheet.)  A point set of a cylinder does 

not indicate which side of the cylinder you are on.  Now the Möbius band is 1-sided.  However, 

the 1-sided nature of the band does not express the fact that a closed 1-sided loop on the 

band winds around any interior point twice; the band has a winding number.  The winding 

number is not contained in the point set.  So the winding number is extraneous information to 

the point set, not encoded in the enumeration of the point set; it is part of the intension of the 

Möbius band.  Thus, the underlying assumption of set theory, namely that the content of every 

concept can be encoded by the extension of a set is false.  Intensions cannot be eliminated.  To 

illustrate this further, consider the following: - 

 

A. A point set X coextensive with the point set of a Möbius band, together 

with the rule that any 1-sided loop in the band winds twice around 

some interior point; i.e. has winding number 2. 

B. X as above, but with the rule that the winding number of any 1-sided 

loop is 1. 

 

A indicates a consistent and physically realisable object; I suggest that B does not.  However, 

the difference is not contained in the enumeration of the point set X, but in how the point set 

is interpreted. 

Suppose we shrink the thickness of a sheet of paper to zero, and hence create an 

idealised sheet, as is the common practice in mathematics.  Shall we say that we have an object 

with 1 or 2 sides?  Before the idealisation, the sheet had 2 sides and a boundary separating the 

two.  Now after the idealisation what is the number of sides of the sheet?  The answer is that 

whichever model we adopt will depend on the use to be made of it in context.  This is again an 

issue of how we are to interpret the model.  The regular model interprets the sheet as a point 

set and therefore implicitly encodes the idealisation that it is a surface of 1 side.  However, 

that does not preclude the possibility that an alternative encoding is needed in an alternative 

context, one that involves the idea of both sides.  The same applies to lines inscribed on 

surfaces; sometimes they are 1 sided and sometimes 2.  Indeed as a line can be the locus of the 

intersection of any number of hyperplanes, we may say that the number of sides of a line may 

be infinite. 
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CHAPTER 7  
 

 
Proof paths and logical compactness 

 

  

 

 

 

1 Embeddings 

1.1  The story so far 
 

Arithmetic is based on the set   0,1,2,3, ... , which is an unbounded domain of potentially 

infinite elements; it is equipped with a unique principle of reasoning, complete induction, that 

enables one to infer from finite premises to a conclusion about the set as a whole.  In this way 

the collection   0,1,2,3, ...  is “completed”, or, “the boundary is attained”, because we have 

successfully inferred from any to all.  An analytic logic cannot be defined directly over   for 

it forms a chain and the lattice that it generates is just another chain; furthermore, because 

  has no upper bound, the resultant lattice has no maximal point that can serve as 1 in an 

analytic logic.  Arithmetic is not prima facie a form of analytic logic. 

If arithmetic is a form of analytic logic after all, then the set   0,1,2,3, ...  must be 

embedded within a structure over which an analytic logic can be constructed.  With this in 

mind, first-order set theory has been developed.  In this theory a collection of entities known 

as ordinals is defined; these include transfinite ordinals.  The ordinal that most concerns us is 

 , which represents the notion of an actual, or completed infinity with the same members as 

 , but now conceived as bounded into a set, which is a definite, determinate multiplicity;   

is said to be the first ordinal that follows in the sequence 0, 1, 2, 3, ... and to be the first 

ordinal of infinite size, or cardinality.  An analytic logic can be defined over   as follows: 

imagine that the extended real line,   0,1 , is partitioned into   segments that we shall call 

atoms.  Although these atoms may be numbered and we may count them from 0 to 1 this 

primitive relation is ignored when we construct the lattice over it, for otherwise we shall not 

obtain an analytic lattice as required; the lattice that arises is the Cantor set,    0,12 .  In 

order to assess the claim that arithmetic is analytic, we must consider the possibility that all 

the theorems of arithmetic, including all those that depend on the natural order of  and 

principle of complete induction, may be derived from the analytic properties of this structure. 

The Cantor set is subdivided into “regions” that correspond to its ideals and filters.  

One of these is the proper ideal of all finite subsets of  .  Under the Boolean Prime Ideal 

theorem (Boolean representation theorem), which in turn rests upon the Axiom of Choice, this 
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ideal can be extended to a maximal ideal   with maximal element   [Chap. 5 / 7.42]; 

likewise, there is a prime filter (ultrafilter)   with minimal element  .  Under the assumption 

of the Axiom of Choice,   and   become sets and we have   .  The distance of   from 1 

is 1 unit in the metric, and   from 0 is also 1 unit.  Hence, the Axiom of Choice effectively 

transforms   into a co-atom (prime) and   into an atom of the complete one-point 

compactification,              0,1,2, ... , . 

1.2  First-order theories in general 
 

Analytic logic subdivides broadly into two parts: - 

 

1. Pure analytic logic, which comprises the propositional and predicate 

calculus.  Also, the predicate calculus with identity may be included in 

this category. 

2. First-order theories in which a theory about some specific class of 

objects is said to be embedded in first-order logic; first-order logic is 

said to provide the underlying logic of the theory.  Examples of this 

are first-order Peano arithmetic, first-order set theory and the first-

order theory of rings. 

 

First-order theories are defined by the addition of axioms to those of first-order logic.  The 

axioms usually form a list that can be mechanically generated (recursively enumerated).  It is 

also claimed that all mathematics can be written and conducted in first-order set theory, so 

that any other first-order theory could be regarded as a species of first-order set theory.  

First-order theories fall into two categories: - 

 

1. Those theories that are “complete”, or if they are not complete then 

could be completed. 

2. Those theories that are “essentially incomplete”.1 

 

The questions that arise are as follows: - 

 

1. How is the underlying lattice modified or altered when the proper 

axioms of a particular first-order theory are added?  In particular, are 

new lattice points added when this happens?  How, in terms of the 

lattice to which the logic is related, are the models of first-order 

theories related? 

2. Why are some first-order theories complete and others incomplete, and 

what, in terms of the lattice, does this distinction entail? 

                                                           
1 For technical explanation of this term see Monk [1976] chapters 13 to 16, and Tarski, Mostowski and 

Robinson [1953]. 
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The axioms that define propositional logic collectively may be taken as a name of 1 in the 

correspondent lattice.  [4.10.3]  Their role is to define the structure of the lattice and hence 

they may be conjoined to any lattice point   1 .  It is a theorem that these axioms are 

realised in a lattice of just two elements; the prime indecomposable algebra   0,12 .  This is 

effectively a proof of the completeness [Chap.4 Sec.6] of the axioms, because it demonstrates 

that every lattice of which 2 is a factor is a lattice in which those axioms are realised.  Since 2 

is a factor of every (Boolean) lattice whatsoever, every lattice inherits those axioms: 

completeness indicates properties that are inherited by all lattices.   

A formal predicate logic could be defined over a finite lattice, but in this case those 

lattice points corresponding to quantifiers could all be eliminated in favour of finite joins or 

meets (finite lattice points) so such a logic would be merely a propositional logic 

masquerading in disguise.  Therefore, it is natural to consider that a formal predicate logic is 

one where there is at least a countably infinite collection of lattice points.  In the Gödel-

Henkin completeness theorem [4.1 above] the property of completeness is attached to all 

predicate logics; this theorem explicitly attaches this property to every denumerable lattice, 

which is the minimal lattice to which a non-trivial predicate logic applies. The proof of the 

theorem works by constructing a model – that is a lattice – out of the very terms of the 

language out of which the logic is itself constructed: a denumerable lattice takes the place of 

2 in the predicate version of the completeness theorem, and acts as the minimum model.  

This model is not irreducible in the same sense in which the Boolean algebra 2 is irreducible, 

but it is a kind of factor nonetheless.  

The effect of the addition of axioms   to those of predicate logic is a combination of 

one or more of the following: - 

 1.3  The addition of axioms 
1. The axioms may force the lattice to contain a minimum number of 

lattice points; in other words, to affect its cardinality. 

2. The axioms may define a lattice point within a lattice.  A lattice point 

defines (a) an ideal or down set – every lattice point that falls in this 

down set is an instance of  .  If   is such a lattice point then     . 

All lattice points in the ideal correspond to models of  .   Also we have 

(b) a filter  ...  of consequences of   - every member of the filter 

represents a structure that is in some sense a dilution of the structure 

defined by  . 

3. The axioms may define second-order relations on the lattice.  For 

example, the axioms of equality    define relations on the filters 

contained in the lattice. [5.1.7] 

1.4  Example, the axioms of number theory 
In addition to those axioms that govern equality, the axioms of formal number 

theory include the following: - 
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   
 
 
 

    

   



   

1

2

3 0

4

S x y x z y z

S x y x y

S x

S x y x y

 

These four axioms cannot be satisfied in a finite domain.  They firstly imply that 

every element x of the domain has a successor x ; that is,       x y y x 2, and 

this is impossible in a finite domain without circles, which are ruled out by 

0 x .  This illustrates principle 1 above: The axioms may force the lattice to 

contain a minimum number of lattice points – to establish its minimum 

cardinality. 

 

The possibility of adding more axioms to an existing theory creates a picture of the lattice 

being embedded in another larger lattice, and of these axioms defining both an ideal and a 

filter in that larger structure.  Every Boolean lattice is capable of being embedded in a yet 

larger lattice, and the collection all Boolean lattices forms an unbounded collection – in other 

words, a proper class.  Once we progress from first-order logic to a theory embedded in first-

order logic we progress to a model in which the theory corresponds to a lattice point not 

identical to 1, and hence defining both a filter and an ideal in the lattice.  All lattice points 

that fall within the ideal correspond to models of the axioms.  Every lattice point is the 

disjunction (join) of other lattice points.  The lattice may or may not be atomic.   

1.5  Example of embedding a theory within the lattice 
 

Consider the theory of 

2 2

.  This is a particular ring.  The members of this 

ring are equivalence classes    0 0,2,4,6,...  and    1 1,3,5,7, ... .  Its model is 

the set        0 , 1  conjoined with the ring axioms.  This model is already based on 

a prior partition of the space   into these two equivalence classes.  Then   0  

and   1  stand for two mutually exclusive atoms, so        0 1 0  and        0 1 1 .  

(This is the Boolean algebra 2.)  Let us attempt embed this theory within the 

lattice defined by base partition of   0,1  into  parts.  Then    0,1 , 0,3 ,  2,1 , 

 2,4  all particular models of the theory – they are examples from an infinite 

list of sets.  The model as a whole is any one of these, so we attempt to form the 

disjunction:           0,1 0,3 2,1 2,4 ... , but this is not possible as it stands 

because this disjunction gives the 0 of the lattice.  We must treat each member 

of  the  list         0,1 , 0,3 , 2,1 , 2,4 , ...   as  a  new  atom,  that  is an ordered pair: 

                                                           
2                               1 0 0 0x y y x x y y x y y a a a  
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  0,1 .  Hence, if we start with a partition of the lattice in which the atoms were 

represented by      0 , 1 , 2 , ... , in order to interpret 2  in this framework, we 

must rewrite the atoms in terms of more fundamental atoms:    0,1 , 0,3 , ...  and 

the model is the disjunction (join) of all of these.  Let   stand for this join of 

atoms.  This lattice point,  , has at least two different representations.  (1) As 

the join,      0,1 , 0,3 , ... ...  of the atoms of the lattice that constitute all its 

individual models; (2) As the meet of certain axioms, for example, those 

governing the predicate calculus, those governing the ring theory and one 

concerning the size of the domain of the ring.   

 

It would be as well to pause to reflect at this point how profoundly our picture of the lattice 

has now altered as a result of the change up from (a) first-order logic to general idea of (b) a 

theory embedded in first-order logic.  The lattice corresponding to first-order logic is already 

a lattice based on a potentially infinite partition, but the axioms of the theory govern the 

whole lattice and conjointly are a name of 1 in the lattice.  The lattice corresponding to a first-

order theory must also be an infinite lattice, but a larger one3 – the possibility of an actually 

infinite partition arises; the theory itself, denoted in general by  , represents a lattice point 

somewhere in the middle of the lattice.  This lattice point is itself a join of infinite atoms4, so it 

does not belong to the ideal of all finite subsets of the lattice and already represents a species 

of limit point in the lattice – that is, an infinite join.  In order to reach this lattice we have had 

to rewrite our atoms.  Thus, even if a lattice is atomic it is always possible to embed that 

lattice into another lattice with atoms that lie below those original atoms.  A finite illustration 

of this phenomenon would be simply what happens when we step from the Boolean algebra 

  2 , , ,p p2 1 0  to the Boolean algebra    4 , , , , ,p p q q2 1 0 ; we have doubled the number of 

atoms, so that combinations that appear to be atoms in 22  become joins in 42 .  (Compare p 

with p q .)  What is an atom is relative to the partition of space – and when the partition is 

finer then the atoms split.  What this reveals is that what is atomic in a lattice is not absolute.   

1.6 (+)  Definition, floor, lowering the floor, ceiling 
 
A given atomic lattice has a set of atoms which shall be called the floor of the 

lattice.  We progress up the lattice by means of the lattice algebra, or 

equivalently, by the logical operations defined over the lattice.  But now we 

discover that there is an alternative route that takes us out the lattice to 

another lattice, a progression that is possible in the proper class of all lattices; 

we can progress to different atoms.   This  process  shall  be  called  lowering the  

                                                           
3 I mean here “larger” in the sense of proper subset; the larger lattice may have the same cardinality as 

the smaller one. 
4 If the lattice is atomic; otherwise, it is generated from below by an infinite set. 
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floor.  For example, when we rewrite the atoms of the lattice from 

     0 , 1 , 2 , ...  to        0,1 , 0,2 , 0,3 , ... , 1,2 , ...  we are lowering the floor of the 

lattice.  We lower the floor when we progress from a model of   to a model of 

2 .  The co-atoms of a lattice constitute its ceiling and when we lower the floor 

of the lattice we also raise its ceiling.  Lowering the floor is a process of 

embedding a lattice within a larger lattice.   

 

Raising the ceiling

Lowering the floor

Embedding of lattices Refining the partition

Boolean lattices Boolean spaces
Duality

 

 

2 Proof paths and compactness 

2.1  Semantic consequence 
 
Let   represent a set of formulae of a first-order language K; suppose all of the formulae in 

  are held to be simultaneously true.  Let   be another formula of K.  We write    if, in 

every model in which   is true,   is also true.  If a formula   is true in every model we write, 

 . 

 2.2  Basic premise of the discussion 
The basic premise of this discussion is that every model is a lattice.  While it is 

possible to conceive of a general logic that has no direct relation to a lattice 

whatsoever (it is likely that the inferences we meet in natural language 

comprise logic in this sense), it is the very essence of formal, analytic logic to 

derive the properties of inference from the notion of an analytic partition of 

space into parts, and this intimately connects formal logic in this sense with the 

lattice so defined.  We are testing the theory of effective computability – 

specifically, the theory that every mathematical proof is recursive.  The domain 

of what is effectively computable is the countable, non-atomic lattice 2  [See 

section 3 above].  Hence, if we deny that every model of a theory is a lattice we 

automatically refute formalism.  For this reason, the discussion proceeds on the 

assumption that every model is a lattice. 
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On the principle that every model is a lattice, the relation    is interpreted as follows:   

and   are names of lattice points and    means   lies in the filter generated by  .  That 

is, to the language K there corresponds a lattice L and    in K corresponds to    filter  

in L.  By an abuse of language we here use the same symbols in the language as for the filter, 

which is natural enough because even when we describe the filter directly we use a language 

to do this.  Thus    filter  also occurs in a language.  However, in certain contexts it 

becomes essential to distinguish between the language, that is the formal logic K, and the 

lattice L.  In that event we write    in the logic and    filter  in the language.   

The need for this distinction is that analytic logic, which is built over a lattice is 

created for the purpose of systematising formal deduction, which is a second relation not 

identical in meaning to consequence.  The expression    is read, “there is a formal 

deduction of   from  ”.  When, for a language K, the notions    and    coincide the 

logic is said to be complete: “the completenesss theorem for logic becomes the assertion that 

there exists a notion of deduction, based on some clear cut, mechanical procedure for 

manipulating formulas of the language, such that   and   coincide.” (Wolf [2005] p. 22.)  The 

concept of formal deduction,   , is associated with axioms and rules, and as the quotation 

from Wolf indicates there is an assumption that these axioms and rules are “mechanical 

procedures”. It is implicit that such mechanical procedures are also effectively computable.  

These assumptions are questionable. 

To say that a first-order theory is incomplete, symbolised by    but not   , 

prima facie shows that not all proof can be reduced to a mechanical procedure.  But as this is 

the very question at stake in this paper, let us not assume it, but rather seek to prove it. 

A mechanical procedure must be actually finite.  It may be arguably potentially 

infinite, but any actual proof,   , must be a finite sequence of statements that start with   

and conclude with  .  Smullyan writes, “By a proof in A [which denotes an axiom system] is 

meant a finite sequence 1, ... , nX X  such that each term X is either an axiom of A or is directly 

derivable from one or more earlier terms of the sequence under one of the inference rules of 

A.  A proof 1, ... , nY Y  in A is also called a proof of its last term nY  and finally an element X is 

called provable in A or a theorem of A if there exists a proof of X in A.” (Smullyan [1995] p. 

80.) 

In terms of a lattice, we interpret a lattice point   as being equivalent to the meet of 

those iX  in the proof 1, ... , nX X  that are asserted contingently, and the remaining 

 1, ... ,j nX X X as defining a proof path in the filter generated by  .  Then, the primary 

meaning of   , in lattice terms, is that there is a finite proof path in the filter generated by 

  to    filter .  Of course, we must impose a rule that prevents the proof path from 

straying out  of  the  filter  – this  is  called  soundness.   Thus  we  have         as  the 
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definition of a sound proof, meaning that there is a finite proof path in  filter  from   to  .  

To say that a logic is complete, represented by     iff     means primarily that if   lies 

in the filter generated by  , then there is a finite proof path from   to  . 

In a finite Boolean algebra and its concomitant propositional calculus the only kind of 

proof paths there can be are finite, and so we never have to consider anything other than a 

finite relationship in   .  When we step up to the predicate calculus we encounter 

quantifiers.  Ostensibly quantifiers correspond to infinite meets and joins in a lattice.  

Suppose   represents some infinite dilution of the information contained in  , that is, 

relative to  ,   is some infinite join, then we have a proof path that is infinite in length.  A 

concrete example is the inference: - 

 

Pa

x Px
 

where the formula  x Px  represents an infinite join    ...Pa Pb Pc  .  Although this 

represents an infinite proof path, we still have a “mechanical procedure” joining Pa to  x Px  

in the lattice, and the logic, in this respect at least, remains complete. Therefore, we must 

extend the notion of “finite” to encompass “mechanical procedures” that are notionally 

infinite but like finite proof paths in all essential respects.  As one can see in this example, 

denoting Pa by   and  x Px  by  , and assuming  x Px  represents an infinite join, then   

lies “way below”   in the lattice.  Nonetheless, the expression: - 

 

Pa

x Px
 

is the clue to this situation.  Although the distance in the metric between   and   is infinite, 

the rule of inference allows one to “step over” this infinite path and reduce it in one go to a 

single finite step.  In terms of a lattice homomorphism,  , this is a mapping from the lattice 

in which    is an infinite path to another lattice in which        is finite.  When this 

is possible we say that the logic is compact.   

 2.3 (+)  Definition, compact proof path 
A proof path    is said to be compact if whenever there is an infinite sequence in 

  then this has a finite subsequence. 

 

Compactness (in formal analytic logic) is usually defined as follows: - 

2.4  Logical Compactness Property 
If every finite subset of a set of sentences   has a model, then  has a model. 

 

I need to demonstrate the connection between this definition and the one I have presented 

above  in  terms  of  compact  proof  paths.  Before  I  do  so  I  must  comment  again  on  the  
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ambiguity in the meaning of the symbol   in the expression   .    of course stands for a 

set of propositions, but a set is usually a disjunctive list:: - 

            1 2 3 1 2 3 1 2 3, ,S S S S S S S S S  

whereas   is usually interpreted to be a conjunctive list.  This is the interpretation that is 

consistent with all the usual definitions are cast.  For example, Smullyan’s definition of 

satisfiability: “A formula X is called (truth-functionally) satisfiable iff X is true in at least one 

Boolean valuation in which every element of S is true.  Such a valuation is said to satisfy S.” 

(Smullyan [1995] p. 11.)  My underlining.  (Note, to say a set of sentences is satisfiable means 

that it has a model; this also entails that it defines a filter within a lattice.)  This requires 

         1 2 3 1 2 3, ,  has a model  is true in  is true in  is true in S S S M S M S M S M .  It is a 

conjunctive set.  Now suppose   fails to be logically compact, then it represents an infinite 

meet and the path from   to any consequence of all of  ,   , must be infinite in length 

because every element of   is required to make it.  That is, let   1, ... , ,nX X  be an infinite 

proof of  ; then if    is not compact no finite subset of   suffices to prove  . 

Similarly, to show that a set   is not compact, then every finite subset of   has a 

model but   does not have a model.  From Boolos and Jeffrey [1980] (p.141) we have a 

(second-order) example of a non-compact set.  Let 0  represent the axioms of second-order 

Peano arithmetic and     0 nX  where  nX a n .  Then any finite subsequence of   is 

satisfiable, and hence representing a finite proof path in the filter generated by  0 PA , but 

no infinite sequence is satisfiable.  This means that a sentence is implied by a set of sentences 

iff it is implied by some finite subset of it. 

Thus the logical compactness property and the compact proof path are just 

variations of the same underlying fact.  Likewise, the notion of a compact proof path is 

related to the classical topological definitions of compact space and sequential compactness. 

2.5  Result, equiavalence of logical and topological compactness 

Let    where   1, ... , ,nX X  is an infinite proof of   in a Boolean space B.  

All lattice points of a Boolean space are clopen sets, hence the collection 

   nC X  is an open cover for the subspace   B .  If     is compact then 

there exists a finite subcover of C.    

2.6  Proving logical compactness and completeness 
 

One route to proving that an analytic logic K has the compactness property is as follows: - 

 2.7  Proof of the logical compactness property 
Logical Compactness Property 

If every finite subset of a set of sentences   has a model, then  has a model. 

Lemma 

If   is inconsistent, then some finite subset of   is inconsistent. 
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Proof of compactness 

1. Assume that every finite subset of   has a model. 

2. By the completeness theorem, if   is consistent, then   has a model. 

3. From (1) and the lemma,   is consistent. 

4. From (3) and (2),   has a model. 

 

The proof indicates that the compactness of a logic K follows from its completeness: 

     .  Hence completeness is the more fundamental property.  We can summarise the 

above theorem by: complete   compact.  By contraposition a space (lattice) that is not 

compact is incomplete. 

The paradigm of a complete lattice is any finite Boolean algebra.  Every filter of such 

an algebra is finite, hence in the logic built over such a lattice (propositional logic) it follows 

automatically that     iff     (provided the deduction relation is sound).   

2.8  Incompleteness 
 

Incompleteness is    but not   .  Let us interpret this in terms of a lattice.  The relation 

   is based on a notion of compact proof path; if    is infinite there is a finite sub path.  

Hence we can assume that    is effectively finite.  In a formal analytic logic, this also 

means that    is effectively computable.  Incompleteness requires that the filter    

contains essentially infinite proof paths – in other words, proof paths that are not compact.  

The model that is envisaged is one of a filter defined by a set     which contains non-

compact infinite proof paths.  This means that there are limit points in the filter that cannot 

be reached by the finite (i.e compact) proof paths starting at  .  Let the set of limit points of 

a filter    be called its boundary. 

 



boundary







locally compact 
proof path

limit point

 

 

A lattice may be locally compact without being complete, and this is precisely the case of the 

lattice all finite and co-finite subsets of  , denoted  CF .        CF 2 2 .  2  is locally 

compact, and so too is  CF ; but although composed of only clopen sets 2  is potentially 

infinite, unbounded at its boundary.  What this means here is that any given model of 2  is a 
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lattice of actually finite size, n2 , n  and capable of being embedded in a larger set 1n2 ; 

another way of describing this is that 2 is a proper subset of itself:   2 2 .  This is 

possible because   does not represent a number in the usual; if it is a number then it must 

be an indeterminate one.  In any practical situation the indeterminate        must be 

“sampled” – that is determined, and hence given an actually finite size, n.  Then one 

determination of the indeterminate may always been included as a proper subset in another; 

hence       is not a law that applies to       . 

The precise way in which this “openness” of 2  at its boundary is reflected in its 

formal properties are as follows: - 

 

1. 2  is incomplete.  There are joins and meets of elements of 2  that 

are not contained in it. 

2. Any sufficiently strong [Chap. 9 Sec. 1.6] formal analytic logic, K, that is 

built over 2  is incomplete: there exist lattice points  , 2  (note 

change to Cantor set) such that  K  but not  K . 

 

The language, K permits the definitions of filters in 2  that indicate the existence of lattice 

points that do not belong to 2 .  When we say, “There are joins and meets of elements of 

2  that are not contained in it.” we are already discussing the properties of the lattice 2  in 

a meta-language, so have strictly speaking gone beyond what it is possible to say about 2  

from within 2 .  When we add a formal language K, we merely formalise this informal 

argument already taking place within the metalanguage.  Using the flatlander metaphor5, a 

dweller living inside 2  could never know that his world was incomplete.  Even if he keeps 

enlarging his lattice (“world”) by the process of lowering the floor [1.6 above and Chap.5 / 5.8] 

he could move towards the boundary for ever and never reaching it, never know that there 

was a boundary.  The boundary will always some infinite distance away from him. 

 

3 The domain of the effectively computable 
 

There have been many analyses of what effectively computable: - 

1. Turing analysis 

2. Recursive functions 

3. Markov algorithms 

4. Abacus machines 

5. Post systems 

6. Lambda calculus 

                                                           
5 A two-dimensional world where “inhabitants” are unable to imagine a three-dimensional one. 
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They have all been shown to be equivalent [See Chap.2 / 1.2 for discussion], and hence we 

may at any stage of our argument adopt any one of these as an analysis of any other – 

switching as the case requires between the different representations of the same underlying 

notion.  Nonetheless, of these differing representations of effective computability, the Turing 

analysis has some claim to being the most fundamental, since it is also the most conceptual.  

As is well known, the Turing analysis is based on the idea of a machine moving along a tape 

that is partitioned into segments and can carry symbols upon it.  The machine, in accordance 

with a deterministic program, can alter the symbols of the tape and move along it.  It has 

been shown that any program operating with a collection of n symbols is equivalent to one 

operating with just 2 symbols, and here we take the set   0,12  as the basic set of symbols 

for the tape [See Chap.2 / 2.2.2].  There is an intimate connection between this description of 

a machine and the architecture of a digital computer.  Digital computers are composed of 

binary switches.  The basic binary switches are the NOT, AND and OR gates, and from these 

every computable function whatsoever is composed as a Boolean-valued function of inputs 

from   0,1
nn2 .  A consistent, sound computation is one that moves within a filter defined 

by some input   0,1
n

S .  It is self-evident that the domain of any effective computation 

whatsoever is at most 2  or any Boolean sum of it.  It is usual to regard the Turing tape as 

based on an infinite partition of an interval into segments.  But here we must be very careful 

in the description.  It is never possible to partition an interval (or tape) into an actually 

infinite number of segments, so the maximal domain of a computer is never actually infinite, 

only potentially so.  Indeed, we should at this moment remark that in fact no actual computer 

is even potentially infinite.  The largest computer imaginable is always just a large, but finite, 

machine whose domain is at most N2  for some “large” N .  While the term “large” here is 

used, it is a very subjective term, and means large relative to some subjectively “small” 

number; however, when comparing any “large” number N  with  , N is always 

“infinitesimally” small; no number n  whatsoever is ever commensurable with the 

potential infinite.  The following illustration of the Turing tape: - 

 

{0} {1}
{2}

{3}
{4}

{5}
{6}

{0}
{1}

{2}
{3}

{4}
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displays it as an isomorphic copy of       CF 2 2 .  On the front of the tape there are the 

atoms of the lattice ideal of all finite subsets of   and on the back the co-atoms.  A finite 

subset of   is a configuration of the front of the tape; such a configuration automatically 

determines a configuration of the back of the tape.  Each segment, as indicated, corresponds 

to an atom; for example, the configuration 1 1 0 1 0 0 ...  corresponds to the partition 

         0 1 3 0,1,3 .  Let the atomic proposition in the logic built over this lattice be 

  n n , then this configuration corresponds to the proposition     0 1 3p .  It is to be 

noted that every actual Turing machine has a maximal size of information it can manage, 

which corresponds to a definite partition of the tape.  Thus, once the tape is partitioned into 

notional atoms, this constitutes a floor to the lattice, and it is not possible on the tape to 

compute the meets of atoms; for atoms   , ,i j i j , the meet  i j  does not belong to the 

lattice and cannot be effectively computed.  It can be designated meaningfully in the language 

K built over this lattice, and we see automatically that the language is always of greater 

expressive capacity than the tape over which it is built and whose properties it describes.  Of 

course, we can always lower the floor; in practical computing terms this amounts to either 

reconfiguring the tape so that each notional atom is split into others, or building a new and 

larger machine.  This potential for enlarging the machine is also reflected in the usual 

assumption about the Turing tape that it is infinite in both directions.  Also, theoretically we 

could interpolate any finite piece of tape between any two given segments; but this is a 

theoretical possibility only, because in practice the domain of any real machine is never 2  

but actually N2  for some “large” N . 

Consider a specific example of a generalization that can only be obtained in number 

theory by complete induction; the simplest will do: - 

          
 

1
1 2 ... 1

2
n n n n  

Interpreting this in terms of the lattice is problematic because this involves the relationship 

between logical and algebraic operations.  Of course, it is well known that the recursive 

algebraic operations, for example those based on addition and multiplication, can be 

effectively computed; but their relation to the logical inferences is complex.  For example, let 

a Turing tape be inscribed with the symbols: - 

0 1 1 1 1 1 0 ...  

It is easy to write a program that will replace this string by 

0 1 0 0 0 0 0 ...  

But let this be interpreted in logical terms, where the symbols represent atomic propositions, 

then the program computes: - 

        1 2 3 4 5 1  

which  is  an  unsound  inference.  What  this  essentially  illustrates  is  that  taken as a whole 
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unrestricted effective computing is inconsistent, and in practice there must be a huge mental 

effort required to prevent actual programs from computing inconsistent results.  It is well 

known, for instance, that Church’s lambda calculus is inconsistent, and restrictions have to be 

placed on its use in practice.  

Nonetheless, the algebraic and arithmetic operations, addition and multiplication, are 

effectively computable in terms of Boolean functions, so this raises the murky issue of the 

relations between the two systems.  Rather than get bogged down in these we can adopt a 

simple set of rules: (1) Let there be two Turing tapes and a Turing program for exchanging 

information between them.  (2) Let one of these tapes be reserved for purely logical inferences 

representing dilutions up the lattice; let the other tape be a “scratch pad” where algebraic and 

arithmetic operations are computed “on the side”.  These two rules circumvent the need to 

precisely describe the domain of consistent effective computing because – even if the 

program is inconsistent, then we can never write down an actually infinite list of 1 s on the 

Turing tape, so the computer is restricted to the analytic compact part of the lattice, any part 

that is isomorphic to 2  and no more.  The program cannot literally enter the boundary 

region; and if it is claimed to compute any result appertaining in denotation to that region, 

then it does so as a simulation, and this process is strictly a compact and finite one.   

The subject of atomic lattices is central to any discussion of the limitations of 

effective computability.  A lattice that has an enumerable list of notional atoms may be 

regarded as effectively computable because we can build up any formula mechanically from 

the “bottom” that is from the set of atoms; if the list is finite then this is not in dispute.  If the 

enumeration is countably infinite, then this is disputable, because as a matter of fact every 

computer is in truth a finite machine, with finite processing capabilities and “memory”, so the 

domain of a computer is not infinite.  This is an error in the usual Turing analysis of effective 

computability because Turing assumes machines that have countably infinite memory.  

However, this assumption of Turing’s is based on an implicit argument by complete induction 

– namely, that if we have a machine with finite capacity indexed by some ordinal n then we 

could in principle build a machine with finite capacity  n .  This is the usual vicious circle 

[Chap.1 Sec. 7] in the formalist position.  Yet, for the sake of argument, I will, in agreement 

with Turing, take the domain of the machine to be the potentially infinite.  Let us accept, then, 

  as the upper limit on an effectively computable process.  Note, this is not the same as 

saying that the domain of an effective computation is  , since that is a completed, actual 

infinity, and no machine can ever complete an enumeration. 

Both sources of failure important.  Whenever a proof path fails to be logically 

compact then there is a prima facie failure of effective computability.  We can no long build 

the formulae up “from the bottom” and if a theory is built over a non-atomic lattice then it is 

prima facie not effective.  However, that does not quite settle the matter because it may yet be 

possible to argue that there is an effective simulation [See 13 / 2.2] of the non-atomic lattice.  

There is an effective simulation when there exists a structure preserving function that maps 

back the non-compact inferences into the notionally atomic region: 2 . 

It is a theme of this paper to point out the systematic failure in the literature to 

distinguish  between  the  potential  and  the  actual  infinite.  This  error  is  crystalised in the  
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assumption that one may write  , which is a paralogism equivalent to saying that the 

potential infinite   is an actual infinity and that we can finish counting the natural numbers.  

I am not claiming that   is a meaningless concept; on the contrary it is the basis on which 

the whole discussion of set theory and logic in general proceeds; what I am pointing out is 

that as a concept it is by no means the same as the concept  .  Furthermore, this is no mere 

theoretic distinction but a concrete reality.  We can never actually finish counting the natural 

numbers; no machine can ever actually complete an infinite tally; there is no machine with an 

actually infinite number of internal states, and so on and so forth.  Furthermore, we may even 

regard   as the 1-point compactification of   and write        .  When dealing 

with the Turing tape the distinction between   and   should be preserved.  In this case we 

may say that the Turing tape is indeterminately bounded above, and we may represent this 

notion by   ; this symbol    effectively takes the place of   in  , that is when we take 

the 1-point compactification of  ,    appears within         as the indeterminate 

upper limit of the sequence of natural numbers 0, 1, 2, ... that can never be reached by 

counting up alone.   

 

0 1 2 n n + 1 (   ). . . . . .3  

 

Whenever we seek to determine    we translate it into an actual number N and then 

immediately discover that the “real”    lies somewhere else above N. 

 

0 1 2 n n + 1. . . . . .3

N

(   )(   )
 

 

This image expresses the whole error of formalism: the determination of a concept results in 

a formal image of that concept equivalent to a natural number N  but never actually 

embraces the whole meaning of that concept, which slips away from it; here the concept in 

question is that of the potential infinite; regarding the thesis of artificial intelligence, we may 

say that human beings understand concepts and computers understand nothing – they 

compute. 

As indicated above, we can interpolate into the domain of the computer   2 2  

other copies of  2 ; and we may continue this “ad infinitum”.  That is: - 

                
 

  
  

 
 


 

       

 
  
 

   , , ... , ... , , ... , , ...

2
2

2 2

2 2 2 2 2 2 2 2  

(This sequence is based on ordinal arithmetic. )  This sequence is bounded above by   .   
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4 Proofs of the completeness of first-order predicate calculus 
 

There are “constructive” and “non-constructive” proofs of the completeness of first-order 

predicate logic – and examination of both shall be useful for us.  By “constructive” in this 

context I refer to those proofs that actually provide a procedure for testing the validity of any 

possible formula – they give a method of positive validity.  By “non-constructive” in this 

context I mean that the proof of completeness shows only theoretical completeness without 

demonstrating, given    how to obtain the finite proof:   .  I shall begin by examining 

the “non-constructive” Gödel-Henkin proof of completeness. 

4.1  The Gödel-Henkin proof of completeness 
 

The starting point 

The starting point is the theory of the predicate calculus, K, which is here represented by a 

(conjunctive) set of axioms 0 , which are the axioms of the predicate calculus, together with 

its formal rules.  The axioms may be adjoined to any lattice point whatsoever, so that if   is a 

logicaly valid formula and we have   then we may write 0  .  Any proper filter within the 

lattice defined by these axioms constitutes a first order theory.  We denote an arbitrary filter 

by  .  A filter is the conjunction of notional atoms  i  for some index set i I  together 

with 0 .     0 i .6  The bulk of the proof takes place within two lemmas, here referred 

to as lemma [1] and lemma [2]. 

 

The framework of the proof 

To prove:      , which is completeness.  The proof is by contraposition. 

Suppose     

Then      is consistent  By lemma [1] 

Then      has a model  By lemma [2] 

Hence     

This follows because if    every model of   must be a model of  , but by step [2] there is 

at least one model which is a model of   but not of  . 

Therefore       

Hence        

So this outline indicates that the framework of the proof is relatively straightforward.  

However, the proof as a whole is intricate.     This is because of the two lemmas.    The first of  

                                                           
6 The + sign here is used by Crossley et al [1972].  In view of what I have observed, its use is essential.  

The union sign is not correct.  We are adding axioms.  However, by this token it is not correct to view   

as a set either! 
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these is relatively simple; it is the second that is “difficult” and in turn rests on other lemmas, 

so this is a multi-stage proof.  In essence we are working backwards through the lemmas, 

proving them in reverse order so that the general outline of the proof is not lost. 

 

Lemma 1 

       is formally consistent. 

4.2  Critical observation 
 

The addition of the term “formally” to this statement is my own.  I have added it as a result of 

analysis of the difference between this proof and the proof of the incompleteness of 

arithmetic in Gödel’s incompleteness theorem.  Here let us designate first-order arithmetic by 

0 .  (We use K for the predicate calculus and 0  for arithmetic.)   The theory 0  is an 

example of a theory that is sufficiently strong – a concept that I shall formally define 

subsequently.  [Chap. 9 / 1.6]  Then we have the following “paradox” that needs resolution:- 

 

1. By the Gödel-Henkin completeness theorem “all” theories of predicate 

logic are complete. 

2. By Gödel’s completeness theorem 0 , which is a first-order theory 

embedded in first-order predicate logic, is incomplete.  Also, any 

sufficiently strong first-order theory is incomplete. 

 

The puzzle is resolved by an appropriate interpretation of what the term “all” in the first of 

these statements means.  All first-order theories contain analytic sub-domains that are 

isomorphic to the domain of pure first-order predicate logic, and these sub-domains are 

complete – and since compactness follows from completeness – they are compact.  This sub-

domain shall be shown to be isomorphic to 2 , and so the completeness theorem is 

consistent with the incompleteness theorem because it says 2  is a factor of any model of a 

sufficiently strong first-order theory.  This is in the sense of a quotient algebra – that is to 

say, any sufficiently strong first-order theory is a product of lattices isomorphic to 2 .  The 

natural model of analytic logic is the Cantor set, 2 , and we have seen that 




2

2
 is a quotient 

algebra of 2 .  [5 / 5.13]  When we examine Gödel’s theorem we will discover that there is a 

sentence Q, called the “Gödel sentence” that is undecidable; that is, neither  Q  nor 

 Q  for all  .  (The subscript   indicates that the lattice is sufficient large to reflect the 

theory of arithmetic.  In this context 0  represents the proper axioms of arithmetic; 0  the 

axioms of predicate calculus, and      0 0 i  where i  are atoms is a filter.)    Now Q is  
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“true” in  , so that we have  Q , hence   Q  does not have a model – yet   Q  is not 

formally inconsistent in the sense that it does not imply a contradiction.  In a manner of 

speaking   Q  is an inconsistent “set” that cannot be proven within  to be inconsistent.  

This is illustrated by the following diagram: - 

 



boundary

 Q

Q Q
 



 

 

Proof of lemma [1] 

Suppose the statement 

       is consistent  

is false, then      and  is inconsistent .  An inconsistent set implies a contradiction; 

that is: - 

 

(*)              and   for some  

 

Hence         .  From a contradiction, anything follows; hence,      .  By the 

deduction theorem,     . By a tautology,   , which contradicts the supposition. 

 

The step that is not universal occurs at (*).  It follows only from the assumption that     

is formally inconsistent.   

4.3 (+)  Definition, formally inconsistent 
A statement shall be said to be formally inconsistent if it implies by rules of deduction 

a formal contradiction.  X is formally inconsistent if   X  .   

 

To say that     is inconsistent (the qualification “formally” being dropped) means: - 

 

(**)             and   for some    

 

A statement can be inconsistent without it being provable within a system of formal rules 

that it is inconsistent.  For example, the statement “Arithmetic is inconsistent” if inconsistent 

could not be proven within arithmetic.   In the proof, from (**) the conclusion         
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is consistent does not follow.  So the proof has a “hint” of circularity, since the result 

represented by lemma [1] assumes the very thing that the whole theorem sets out to prove.  

The circularity can be partially avoided on the understanding that the concept of formal 

inconsistency follows from some background property that is possessed by 0  but not by  .  

That is that every model of 0  is a model in which every inconsistent statement can be 

formally proven to be inconsistent.  So this implies that the model is a lattice in which the 

relation of deduction is compact.  So the theorem should be recast in the form:  there exists a 

formal model of the first-order predicate calculus in which deductive proof paths are complete 

and compact:      .  The real task before us is not so much as to prove this theorem 

but to demonstrate the properties of the maximal model (lattice) wherein this property holds.  

Another form of this question is: what sets of statements can be added to the predicate 

calculus to produce theories that remain complete? 

 

Lemma 2 

        is consistent  has a model  is consistent   

 

To prove Lemma 2 we will develop a series of extensions to the theory   to obtain a theory 

 *  that has a model.  Each theory is embedded in the next extension up; thus   is embedded 

in  * , which means that any model of  *  is also a model of 0 .  An important lemma that 

will be required to demonstrate this process is Lindenbaum’s lemma. 

 

Lindenbaum’s lemma 

If   is a consistent theory, then there exists an extension  *  of   such that, for any wff, 

either  *  or  * .  A consistent set that has this property is said to be complete.7 

 

 Definition, rich / complete language (Monk [1976] slightly modified.) 

Let L be a first-order language.  A set   is said to be rich if for every sentence of L 

that is of the form  x  there is an individual constant c of L such that 

         x x c .    is said to be complete if, for every sentence   of L either 

   or   . 

Monk’s statement of Lindenbaum’s lemma 

Any, complete, rich, consistent set of sentences has a model. 

 

In the theorem the cardinality of the model is that of the set of all terms involved.  For our 

purposes we assume the cardinality is 0 . 

                                                           
7 Crossley [1972] uses the term “rich”.  I am following Monk [1976], who uses “complete” for what 

Crossley calls “rich” and “rich” for something else. 
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Proof of Lindenbaum’s lemma 

Let   1 2, , ... , , ...i  be an enumeration of wffs of  .  Define a sequence of theorems 

  1 2, , ... , , ...i  as follows 

  1  

 


   
  



i
1

 if  

 otherwise
i i i

i
i

 

Define   * i .  Then 

(1)   *  is consistent. 

Each  1i  is an extension of i  and  *  is the union of all such extensions.  Hence if 

 *  is inconsistent it must be because one of the i  is inconsistent.  We prove by 

induction that all of the i  must be consistent. 

Firstly,   1  is consistent, by hypothesis. 

Then, assume i  is consistent. 

If   1i i  then  1i  is consistent. 

If   1i i  then    1i i i  by definition.  Then  i i  and  i i  is consistent, by 

lemma [1].  Hence  1i  is consistent. 

 (2)  *  is complete. 

 Let   be any closed wff of  . 

 Then    1i  for some  0i  

Either       1 1 1 or  i i i i for if    1i i  then  1i  is added to  1i  as an 

additional axiom. 

Hence, in  *  either     * or  *  

Therefore,  *  is a complete, consistent extension of  . 

4.4  Critique –  concerning quantifier elimination 
 
The criterion     i if i i  assumes a positive test for theoremhood, which is suspect.  

Mendelson [1970] p. 67 explicitly acknowledges this: to paraphrase what he says (slightly): 

“Note that even if one can effectively determine whether any wf is an axiom of  , it may not 

be possible to do the same with (or even to effectively enumerate) the axioms of  * , i.e.,  *  

may not be axiomatic even if   is.  This is due to the possibility of not being able to 

determine, at each step, whether or not   1i  is provable in i .” (Mendelson [1979] p. 67)8  

There are two ways to deal with       1 i if i i i  : - 

                                                           
8 The only modification is the change of the symbols so that they are consistent with the notation used 

here. 
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1. If each i  is axiomatic then have a positive test for theoremhood and 

 *  is axiomatic.  We can effectively determine each extension, decide 

whether to explicitly add   and so forth. 

2. If any i  is not axiomatic, then we can construct the complete 

extension of  , but as a theoretical entity only; it places it in the 

category of other completeness axioms (in the topological sense).  We 

cannot enumerate the theorems of  *  - we can only say, theoretically, 

of any wff, either  *  or  * ; there is no effective positive or 

negative decision procedure. 

 

Now this really indicates what an extraordinary theorem the completeness theorem is.  For 

the main part our primary object of concern is the predicate calculus with a countably infinite 

language.  However, the proof is also constructed in such a way that one can infer a 

generalised completeness theorem that would apply to every logic whatsoever.  But what the 

implications of such a theory would be for the issue of effective computability would be very 

different.  Now let us assume for the moment that at the stage  i  we have a portion of the 

predicate calculus that is equivalent to some finite Boolean algebra.  Then, indeed  i   is 

decidable because we have either i   or  i  .  So every extension that is obtained in 

this way is axiomatic.  In this way the completeness theorem is simply equivalent to the finite 

Boolean representation theorem.  [Chap. 5 Sec. 6]  Now this assumption will be justified even 

for the predicate calculus as a whole if we can prove quantifier elimination for that calculus.  

So the true heart of the theorem, so far as the predicate calculus is concerned, is quantifier 

elimination. 

If we do not have quantifier elimination, so that there is some extension  i  that is 

not axiomatic, meaning we do not have a decision procedure that gives i   or  i  , then 

the theorem may still prove that the theory is complete, only we must be careful as to what 

completeness here means.  Completeness is the meta-property,      , so if we extend 

the notion of completeness to an extension  i  where we don’t have i   or  i  , but still 

adopt the rule       1 i if i i i   then we are allowing the notion of proof path   to be 

stretched.  Indeed, the concept may be so stretched so as to be virtually indistinguishable 

from the consequence relation  , whereupon completeness becomes a mere definition.  The 

most obvious way to stretch the deduction relation is to allow for proof paths that are 

actually infinite; this is called ordinal logic.  But actually infinite proof paths may be of 

theoretical interest, but they are not effectively computable.  

Thus, in conclusion, since our subject is effective computability it is correct to limit 

the proof path to compact proof paths, i.e. paths that are capable of being given a finite 

subsequence, even if they initally appear as infinite in length.    When we eliminate quantifiers  

 Chap. 7 ] COMPLETENESS OF THE FIRST-ORDER PREDICATE CALCULUS [ Sec. 4 



© Peter Fekete ] 202 [ 06 Oct. 2011 

 

 

we specifically reduce a possibly infinite proof path to a finite one.  To remain effective it is 

crucial that the criterion for each extension,       1 i if i i i  , be effectively decidable, 

hence that we have i   or  i   at every stage.  This confines the models to those that 

possess the property of quantifier elimination. 

 



 

2(   )



2(   )

CF (   )

 

 

We simply do not allow the proof path to be anything but compact, which means that there is 

a homomorphic image of it in embedded in some finite filter which is itself embedded in the 

ideal 2  of  CF .  Then, by the principle of dilution if  i   then we will finite prove 

 i  ; that places   in the ideal i  .  Thus, so far as the effectiveness of the predicate 

calculus is concerned, the predicate calculus is effective (1) if it has quantifier elimination and 

(2) its proof paths are homomorphic to finite proof paths in the lattice  CF . 

4.5  Digression on the generalised completeness theorem 
 

Some digression on the generalised completeness theorem is appropriate.  Lindenbaum’s 

lemma makes no reference to the size of the model; as far is it is concerned the model could 

be non-denumerable.  However, the proof is by complete induction in the meta-language, 

which is in itself “evidence” in favour of Poincaré’s thesis.  (Here we will not assume this.)  If 

we wished to extend this to a model of cardinality  0  then we would have to use transfinite 

induction.  That places us in a metalanguage that is some form of set theory.  There is a proof 

in Mendelson [1979] (p.101) of the theorem due to Los and Rasiowa-Sikorski that the 

generalised completeness theorem is equivalent to the maximal ideal theorem; this means 

that the generalised completeness theorem depends on the Axiom of choice. (Or on the 

weaker Prime ideal theorem.)  But this is to be expected.  The diagram 

 

(   )

0 1 2 n n + 1. . . . . .3



¥
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indicates that when   is embedded in transfinite set theory, the role of   in complete 

induction up to   is replaced by the indeterminate boundary    between the finite and the 

infinite; it is the role of the Axiom of Choice to assert that the element     (under different 

descriptions) is a set; from this we obtain the result known as the Maximal Ideal Theorem that 

2  can be extended within 2  to a maximal ideal  .  [5.7.21 et seq.] 

Let us return to our annotated proof of the Gödel-Henkin completeness theorem. 

 

The pre-extension9 

1. Start with the theory  . 

In the framework of the completeness theorem as a whole, that starts with a theory 

    for some   such that   .  Now, without loss of generality, we will assume 

that our starting theory   just is this theory for which we have      .  

2. The aim is to provide a model for  , which is a first-order theory – that is, a theory 

embedded in the predicate calculus.  To do this we must provide an interpretation for 

every possible statement of  , which includes quantifiers.  We can start with either 

the existential quantifier as primitive and define the universal quantifier from it, or 

conversely.  So we must show how we can validate any statement.  Since we already 

know that the propositional calculus is complete, the problem to solve lies with the 

quantifiers.  List all the formulae with 1v  as a free variable.  That is 

    0 1 1 1, , ...v v 10.  There is no reason to suppose that the theory   decides any of 

these formulae.  Indeed, they are open formulae, and not closed ones. 

3. Add individual constants, 1 2, , ....b b , to the language. These will be called “witnesses” 

and the new theory will be denoted 0 . 

  Result 

0  is a consistent extension of  . (See Mendelson [1979] p. 68) 

It is the witnesses that will map directly to “objects” under the interpretation that will 

come later, and hence they provide the essential “glue” to stick the extended theory 

to the model. 

4. Add new axioms of the form 

         1 1 jv v b  

for each appropriate witness.11   

                                                           
9 This term is my own.  It is a “pre-extension” that occurs prior to the application of the Lindenbaum 

lemma. 

10 Mendelson [1979] distinguishes the variables from each other.  However, since 1v  is free there is no 

loss of generality in using it as the same dummy indeterminate variable in each formula. 
11 Mendelson [1979] takes the universal quantifier as primary and adds the axioms in the form: - 

          1 1 jv v b . 
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4.6  Commentary 
 

This line acts in the role of quantifier elimination which shall be discussed below.   We have in 

this step eliminated the existential quantifier, replacing it by a concrete representative.  I have 

already noted Monk’s definition of rich above.  The proposition that follows immediately 

confirms that the purpose of these axioms is to eliminate quantifiers. 

 4.7  Proposition (Monk [1976]  
Let   be rich.  Then for any sentence   there is a quantifier free sentence   such 

that    . 

4.8  On denumerable languages 
 

There is an implicit assumption that the collection of witnesses 1 2, , ....b b  is denumerable.  But 

there is nothing in the construction itself to guarantee this.  In other words, this part of the 

proof would work with non-denumerable languages as would be the case in the generalised 

completeness theorem.  Thus we identify the background property of the predicate calculus 

and complete theories therein: that the predicate calculus is a denumerable language; 

therefore, only a denumerable list of witnesses is required and the model is denumerable.  If 

the language is not denumerable then the theorem will still go through, but the model will not 

be denumerable.  It is only the finiteness of the language that guarantees it completeness.  If 

the list of witnesses is not countably infinite, then the completeness theorem may still go 

through but cannot be used in a demonstration that whatever is written in such a theory is 

effectively computable.  Any actual non-countable infinite collection is not effectively 

computable.   

 

Continuation 

There will be one new axiom for each formula listed at stage 2.  The new theory, with 

all the additional axioms, which is an infinite list, will be denoted  .   

Result 

  is a consistent extension of 0 . (See Mendelson [1979] p. 68)  

 Remark 

There is some ambiguity as to the status of the collection   - is it potentially or 

actually infinite.  If it were actually infinite and then quantified over, then the proof 

would become non-effective – at least as to what the proof is about – formalists would 

still insist that the proof itself was a finite object.  However, my view is that   

represents a potential infinity only. 
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Outline of the proof of lemma 2 

1. Starting with   construct the pre-extensions 0  and  . 

2. Then, with  , apply Lindenbaum’s lemma to obtain an extension  *  of   such 

that, for any wff,  , either  *  or  * . 

3. Demonstrate the existence of a model for  * . 

 

Constructing the model 

Define an interpretation I for   as follows. 

A. The domain of I shall consist of all closed terms of K.  (A closed term is a term 

without a variable). 

B. The interpretation assigns each term to itself.  That is I maps t t . 

 4.9  The crucial step: making the language a model of itself 
This is the crucial step: it makes the language a model of itself.  The relations in 

the language form a lattice.  Since the lattice is countably infinite, it is equivalent 

to the atomless Boolean algebra.  Recall that all countably infinite atomless 

Boolean algebras are isomorphic and that  CF  is its cannonical model. 

 

C. I maps  *f f  where    1 2 1 2* , ,...., , ,....,n nf t t t f t t t  

4.10  The language is a model of itself 
The interpretation is just the language itself.  So if we are mapping terms to terms, 

the referents of functions are just the wffs used to denote those functions.  Hence the 

seeming vacuity of the definition here.  The model is more or less a direct copy of the 

language – in every respect.  So if t is a term then t is an individual in the model; if f is 

a wff representing a function, then the function just will be f, and so on.  We denote 

the function *f  but we might (almost) have just used f.  Note that functions map 

terms to terms. 

 

D. I maps      1 2 1 2, ,....,  iff  * , ,....,n nR t t t T R t t t . 

 

Result 

I provides a model M for K. 
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Proof 

Since all theorems of K are theorems of   and   is a consistent extension of  , it 

follows that any model of   is also a model of  , hence we have to show only I 

provides a model M for  . 

Proof is by induction on the length of an arbitrary formula   where the length is 

defined to be the number of connectives and quantifiers in  . 

(i) If   is a closed, atomic wff, then   is true in M iff  * .  This follows by 

the definition of I. 

(ii) Induction step. 

 Induction hypothesis.  If   is shorter than   then 

   is true in M iff  * . 

 Proof by cases 

We consider only the cases             , , x  since all other 

connectives and quantifiers can be defined in terms of these.12 

Case (a):     

Suppose   is false, then   is true; hence, by the induction 

hypothesis  * .  Since *  is consistent,  * ; that is,  * .   

Suppose   is true, then   is false; hence by the induction 

hypothesis,  * .  By the completeness of * max ,  * ; that 

is,  * . 

Case (b):      

The proof is similar to that for (a). 

Case (c):    x 13 

                                                           
12 For a version of the proof based on the universal quantifier this line becomes: 

           , , x  

13 The proof that follows needs to be adapted to the universal quantifier as follows:- 

Case (c):    x : Let    F .  Assume x y , for otherwise x is not free in   and in this case   is 

true in M if, and only if,   is true in M.  By the induction hypothesis *  iff   is true in M, and so for 

  as well.  Hence      x F x . (i)  Assume   is true in M, but  * .  By completeness,  *  ; i.e. 

    * x F x .  Hence   * F b  for some b.  [This requires a separate lemma, see below.]  But as 

   x F x  is true in M, by the induction hypothesis  * F b .  That is      * F b F b .  Hence, by 

contradiction *  . (ii)  Assume   is false in M, but *    Since    x F x�  is false in M, for some term 

t  we have  F t  is false in M.  But    * x F x , hence  * F t , and by the induction hypothesis  F t  is 

true in M.  This contradicts the consistency of  * , hence *  . 
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Let    F .  Assume x y , for otherwise x is not free in   and in this case 

  is true in M if, and only if,   is true in M.  By the induction hypothesis 

 * iff   is true in M, and so for   as well.   

Hence, let       x F x . 

(i) Assume   is true in M, but  * .  By completeness,  * ; i.e. 

     * x F x .  Hence   * F b  for some b.  But as    x F x  is 

true in M, by the induction hypothesis   * F b .  That is 

     * F b F b .  Hence, by contradiction  * . 

(ii) Assume   is false in M, but  *   Since    x F x  is false in M, for 

some term t  we have  F t  is false in M.  But     * x F x , hence 

  * F t , and by the induction hypothesis  F t  is true in M.  This 

contradicts the consistency of * , hence  * . 

This completes the proof that M is a model for *  and hence for  , and 

thereby completes the proof of lemma (2). 

 

This completes the proof that M is a model for *  and hence for  , and thereby completes 

the proof of lemma (2).14   

4.10  Observations on this non-constructive proof of completeness 
 

This completes the description of the non-constructive proof of the completeness theorem.  

To summarise the observations made about this theorem. 

 

1. As a theorem about first-order predicate calculus it is based on the fact 

that the language is countably infinite,  and  constructs  a model for the  

                                                           
14 However, in the version of the proof based on the universal quantifier this proof requires the additional 

following lemma. 

Lemma (3) 

       x F x F b �   

The intuitive idea here is that if     x F x�  is true then there must be some object for which F does not 

hold, and for the purposes of the proof we give it an arbitrary name ‘b’.  The principle is clearly valid.  In 

a full proof, however, in order to guarantee this, we have to first add to K a new set of symbols, 

 1 2, ,..., ,...ib b b  such that no two are the same and then all axioms corresponding to the schema - 

       i i jx F x F b�  

This calls for an additional construction, and for a proof that the resulting theory is a consistent 

extension of K.  In the existential version of the theorem, this has more or less already been done. 
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language itself out of the language.  This model is a countably infinite 

lattice and hence must be the atomless countably infinite Boolean 

algebra.  From this we see automatically that all proof paths in first-

order predicate calculus must be compact; hence capable of finite 

representation.  Proof in the predicate calculus therefore becomes 

effectively computable in the sense of a positive test of theoremhood. 

2. It is the fact that the language is countably infinite that permits the 

essential step of quantifier elimination.  Quantifier elimination means 

that all quantifiers in the predicate calculus are dummy symbols only.  

In terms of effective computing it means that any valid inference of the 

predicate caculus can be effectively simulated on a machine that uses 

only Boolean 2-valued functions.  This is practically why the predicate 

calculus is effective. 

3. The predicate calculus does not embed a principle of complete 

induction; however, complete induction is required in the meta-

language to prove that the predicate calculus is complete.  Therefore, 

the very proof that the predicate calculus is effective is premised on 

another principle that is, relative to the predicate calculus, non-logical.  

Certainly, the completeness proof is no proof of the effective 

computablity of complete induction – in makes no reference in the 

object language to it whatsoever but rather exploits its properties in the 

metalanguage.  

 

An existential quantifier    x x  just is a name of a lattice point – namely a disjunction of 

statements:      1 2 ...b b .  The disjunction could be finite or infinite, but the language, 

assuming it is denumerable, can only name a denumerable number of them.  Therefore, 

regardless of what the underlying lattice is, and how many connections it has, and whether 

these are more than denumerable, the lattice to which the predicate calculus corresponds is a 

denumerable sub-lattice of this.  Then every existential quantifier can be replaced by a single 

name of a lattice point.  Here the device is used to select one of the particular members of the 

list,      1 2 ...b b , as a representative of the list as a whole, or rather, the lattice point.  So 

the background assumption is firstly that for any inference in a complete first-order theory a 

denumerable model is sufficient to represent it. 

4.11  Constructive proofs of completeness 
 

Since our interest is the theory of effective computablity the treatment here of the 

constructive proofs of the completeness theorem shall be light.  The aim of a constructive 

proof is to provide an actual effectively  computable procedure that starting with the question 
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does   prove   where both are wffs of the predicate caculus decides yes if indeed   .  It 

is a one-sided test, since it does not give   .  The simple point is that every constructive 

method uses quantifier elimination at some point to reduce a problem involving quantifiers 

to one that does not, and then uses the decision procedure of the propositional calculus to 

finalise the problem.  I will omit the method that uses Skolem functions as described by Wolf 

[2005] and Monk [1976].  Smulyan [1995] describes the method of analytic tableaux based on 

the Hintikka set.  A very similar approach is offered by Boolos and Jeffrey [1980].  What they 

call a canonical derivation is equivalent to a tableau. 

 

Definition, canonical derivation (Boolos and Jeffrey [1980] p.131) 

A canonical derivation from   is a derivation   such that 

1. Every sentence in   occurs in  . 

2. If  v  occurs in  , then   t  for some term t occurs in  . 

3. If  v  occurs in  , then   t  for some term t occurs in  . 

4. If  v  occurs in  , then every possible substitution instance for   t  for some 

every possible term t occurs in  . 

5. All function symbols appearing in   appear in  . 

 

The whole point of a canonical derivation is that it tests for validity by eliminating 

quantifiers.  This in turn constructively proves completeness because, “If   is unsatisfiable, 

any canonical derivation from   will be a refutation of  ”. (Boolos and Jeffrey [1980] p.131)  

Note that this is equivalent to completenss in our sense,      , because if    then 

      is inconsistent, hence has no model (is unsatisfiable), hence, by the result, has a 

refutation.  The refutation constitutes the proof path from   to  . 

4.12  There are no true quantifiers in complete predicate logic 
 

We have already seen that the predicate calculus is not a true predicate calculus, since all 

predicates in it can be eliminated in favour of names of lattice points.  Now I observe that if 

we have a predicate calculus such that in the very notion of proof all quantifiers can be 

eliminated, then there are no true quantifiers in this logic – and it is not a quantifier logic 

either.  These surprising results may appear paradoxical, strange and doubtful, but they are 

true nonetheless.  The root source of this result stems from the fundamental principle of 

formal analytic logic, namely to build a theory of logic over a lattice that is in turn 

constructed from a partition of space.  The air of paradox comes from the fact that we are 

attempting to squeeze natural language into this straightjacket and certain residual intuitions 

continue to obstruct this movement.  Indeed, it is the very thesis that is under examination 

here is that there are synthetic principles of reasoning, and no constraint upon those 

principles will ever make them fit into formal analytic logic.   The tension here arises from the 
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residual commitment to an alternative and unrecognised concept of inference – one that is 

based on meanings, not extensions.  The issue is similar to the one that we observed when 

considering the paradox of material implication.  [See Chap. 4 Sec. 6]  If we wish to construct 

a true predicate calculus and a true logic of quantifiers we must start with something other 

than formal, analytic first-order predicate logic. 

To return to the presentation by Boolos and Jeffrey [1980], their version and proof of 

the compactness theorem is instructive. 

 

Compactness theorem 

  is unsatisfiable iff some finite subset of   must be unsatisfiable. 

 Proof 

The if part is trivial. For the only if part: Let   be unsatisfiable.  Put   into prenex 

normal form.  Then there is a canonical derivation   from   such that some finite 

set   1, ... , n  of quantifier free sentences in   is unsatisfiable.  Then delete from   

all sentences that occur after n .  The result is a finite derivation from   that 

includes only a finite number of members of  .  By the soundness theorem this finite 

subset of   is unsatisfiable. 

 4.13  The essentially finite character of the predicate calculus 
 

The whole essence of the compactness theorem is that the proof of unsatisfiability must be 

finite, so only a finite subset of   can be involved in it.  If we allow infinite paths then this 

result fails.  The complete predicate calculus is potentially infinite but actually finite.  That is 

to say, in any concrete instance of finding a proof of   , given   , the information 

encoded in    is finite.  So the completeness of the predicate calculus is really based on 

complete induction (in the non-set-theoretical sense), namely that if    encodes 

information of finite degree n, then it is possible to solve a problem that encodes information 

of degree 1n . 

We may now consider the Löwenheim-Skolem theorem. 

4.14  Löwenheim- Skolem theorem 
If   has a model, it has a model with an enumerable domain. 

 Proof 

Let   be a set of sentences with a model.  This means that it is satisfiable.  

Therefore, there is a canonical derivation   from   and by soundness this is 

not a refutation of  .  Thus   is an enumerable, OK [synonym of locally 

compact]  set of sentences that provides an interpretation that matches  .  It is 

a model of  .  [These assertions follow from their versions of the completeness 

theorem and three lemmas presented there.  (Boolos and Jeffrey [1980] Chapter 

12.) ]
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Suppose   has no predicate letters.  Then the only non-logical symbols 

appearing in   are sentence letters, and in effect the domain is an enumerable 

set of propositions with valuations assigned by the interpretation I of the 

canonical derivation. (   is a tautology.)  Thus suppose   contains predicate 

letters.  Then there is at least one term appearing in  , which is the set of 

quantifier-free sentences of the canonical derivation.  But everying in the 

domain of I is the denotation of some term appearing in  .  There are at most 

enumerably many such terms; hence the domain of I is enumerable.  Therefore, 

  has a model with an enumerable domain. 

 

The formulation here of the Löwenheim-Skolem theorem is known as the downward L-S 

theorem because it takes a theory with an uncountable model and constructs a countable one.  

There is also the upward Löwenheim-Skolem theorem: 

4.15  Upward Löwenheim- Skolem theorem 
If   has a model with a countably infinite domain, then it has a model of every 

non-countable cardinality. 

4,16  Observation 
 
The completeness theorem is based on constructing a countably infinite domain that acts as a 

model of a set of sentences  .  All the arguments here demonstrate that this model is 

isomorphic to the non-atomic countably infinite lattice         CF 2 2 .  The essential 

factor is the ideal 2 .  If I now take the product of 2  with any other lattice whatsoever, of 

any cardinality whatsoever, I will obtain another lattice.  Let 


 L L2  where   0L , 

then L will be a model of   with cardinality  .   

5 The rule of generalisation 

5.1  The lattice of ideals 
 

 F  is a potentially infinite set all of whose subsets are finite.  However, there are other 

ideals that share this property – consider the ideal 

          2 0,2,4, ... , 0,2 , 0,4 , 2,4 , ... , 0,2,4 , ...F  

which comprises the ideal of all finite subsets of even numbers in  .  It requires the Axiom 

of Choice to transform    2 0,2,4,6, ...  into a well-defined, well-ordered set and extend it to 

a maximal ideal with corresponding maximal element:    2 0,2,4,6, ... . [Compare to the 

maximal ideal theorem – Chap. 5 / 7.21]  This maximal element belongs to the completion of 

 F  and not to  F  itself. 
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Consider a representation of the lattice that orders the atoms according to ascending 

primes is useful: - 

             1 2 32 , 3 , 5 , ... , k
k p  

where kp  is the k th prime.  Relative to this ordering of the atoms in   we obtain ideals of 

 F  corresponding to maximal elements of 2  of the form: -  

             2 0,2,4,6, ... 3 0,2,4,6, ... 5 0,5,10,15, ... ...  

None of these sets belong to  F .  They are correlatives of   in           , and 

represent potentially infinite, unbounded collections.  Hence they have actually infinite sets 

as counterparts also belonging to the lattice 2  and part of the boundary region of sets that 

are actually infinite but not co-finite.  I denote these: - 

                 2 0,2,4,6, ... 3 0,2,4,6, ... 5 0,5,10,15, ... ...  

Their enumerations are the same, but implicitly they are conceived as actually completed 

collections, whereas the sets in the previous collection are not.  There are 1-point 

compactifications of sets      2 , 3 , 5 , ...  and that these may be written: -  

                              2 3 52 2 3 3 5 5 ... ...k
k k

p
p p  

where    2 2  and in general    k
k

p
p .  This has the same function as the 1-point 

compactification of  : to complete the potential infinite and produce a well-ordered set of 

actually infinite members suitable for the partition of the interval.  For that purpose the set 

must have a last member, and this is represented by  kp
.  We have, for example, 

                 2 22 2 0,2,4,6, ... , ... , 0,2,4,6, ... , ... , 2 0,2,4,6, ... , ... , 0,2,4,6, ... . 

5.2  Non-compact proof paths 
 

Now we turn our attention to the issue of what implications this structure of the lattice has 

for analytic logic and inference in general.  Our formal analytic logic is based on the principle 

that a sound inference is a form of dilution of premises; this also means that in lattice terms 

we infer up the lattice and never down it or sideways.  The consequences of a proposition 

p corresponding to lattice point p is everything that lies in the filter generated by p.  This 

filter is written, p  .  The compact proof paths are written p  .  We see that the compact 

proof paths are limited to regions of the lattice that are isomorphic to the domain  F  - the 

ideal of all finite subsets of  ; any transcendence to the region lying above  F  belonging 

to the boundary requires an infinite, not compact, proof path.  We must adjoin an element k  

from the prime filter  .  In our logic the set    2 0,2,4,6, ...  is the name of a disjunction of 

atoms –  it is  a  lattice  point  in  its own right and represents the filter of all consequences of  
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that disjunction.  As a matter of direct intuition, we see that the set       22 2  lies in the 

filter  2  ; hence the expression,     2 2 , is a valid semantic consequence.  However, that 

does not mean that we may automatically write     2 2  because in practical cases we actually 

have to construct a proof, and since the proof path is not compact we need some other device.  

Taking    2 0,2,4,6, ...  as a concrete example, this name of a lattice point represents some 

kind of proposition  P k  that may be regarded as contingently given.  It corresponds to a 

lattice point and generates a filter.  In formal logic we have the rule of inference, Existential 

instantiation: - 

 
 

   

P k

n P n
 

However, if the logic has quantifier elimination then we are confined to a compact part of the 

lattice, that is, to a part isomorphic to  CF  and cannot transcend that part by means of this 

device, unless there is some other implicit principle involved.  In fact, in a compact domain 

 P k  and    n P n  are names of the same lattice point;    n P n  represents a join of lattice 

points,            ...n P n P a P b  and  P k  is some arbitrary member of that join used to 

represent it.   

5.3  Generalisation 
 

The inference of Generalisation is more problematic: - 

 
 

   

P k

n P n
  

As indicated earlier [5/1.3] we could only have    n P n on an unrestricted domain if in 

fact     n P n 1 .  Even on a restricted domain    n P n  stands for a meet of lattice points, 

and the inference,      P k n P n  is either a swapping of two names of the same lattice 

point, or perhaps an inference down the lattice, which would appear to be logically unsound.  

If it is an inference up the lattice then    n P n  is a dilution of the information contained in 

 P k , so some additional information has been joined to it:         n P n P k .   

5.4  Embedding complete induction in the lattice 
 

   is the indeterminate size (measure) of  in  , which is the partition of   0,1  into   

parts.  It is not possible to determine precisely where the neighbourhood of 0 ends and the 

neighbourhood of 1 begins.  In fact, they interpenetrate each other. 
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(   )

= {   }=

0 1

 

 

  

It is the Axiom of Choice that asserts that   is also a set.  This accounts for the relative 

strength of the Axiom of Choice (Zorn’s Lemma) and the Boolean Prime Ideal theorem.  The 

Axiom of Choice asserts that   is a set; the Boolean Prime Ideal theorem asserts that   2  

is a set and the former implies the latter, but not conversely. 

If we break up   0,1  into   actual atoms, we obtain a situation illustrated by the 

following diagram: - 

 

 {1}

=

{   }

0 1

{0} {2} {3}  

 

This illustrates how the inclusion      as an atom in the partition exactly parallels 

the inclusion of the other atoms.  But the partition is a partition into an antichain, so the 

collection       0 , 1 , 2 , ...  has no order structure upon it, for otherwise the structure that is 

generated over it as skeleton would also be a chain and not a Boolean (distributive) lattice.   

When the logic is sufficiently strong [Chap.9 / 1.6], then it is possible to embed a 

principle of complete induction and definition by recursion into the analytic structure.  But 

where in the structure does this occur?  It cannot appear in   for that would then transform 

the collection       0 , 1 , 2 , ... into a chain.  Hence, the entire set   is embedded into the 

structure as a completely ordered chain on which complete induction is defined.       is 

the atom that asserts that complete induction for the actual infinite is permitted.  There are 

principles of relativity and symmetry at work here as well.  From the perspective of 0   

represents the neighbourhood of 1, and is a set comprising a completely well-ordered chain 

of co-atoms; 0 “perceives”   as having a last element, this being the atom next to 1 in the 

actually infinite ascent from  0  where the atoms      0 , 1 , 2 , ...  are placed in one-one 

correspondence with the ordinals, 0, 1, 2, ...; hence, complete induction by descent is defined 

on the interior of the atom     .  For complete induction by descent to work, starting with 

the last ordinal next to   we must be able to well-order  ; that is,   must have a first-

element.  It requires the Axiom of Choice in order to prove that   is well-ordered; this 

transforms   into a set.  Prior to the application of the Axiom of Choice   was not even a 

set, let alone a well-ordered one.    It was an ordered collection (as opposed to set) of co-atoms 
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of the neighbourhood of 1 that has no least member; just as      0 , 1 , 2 , ...  is an unordered 

collection of atoms of the neighbourhood of 0 that has no greatest element.  The Axiom of 

Choice enables one to order this latter collection, provide it with a greatest member, and thus 

transform it from a mere collection into a set.  Without the Axiom of Choice, the co-atoms in 

the neighbourhood of 1 are an unordered collection that can be represented as 

           0 , 1 , 2 , ...  ; under the Axiom of Choice these are well-ordered; we 

represent the co-atoms as        0 , 1 , 2 , ... ; the Axiom of Choice places these into one-one 

correspondence with the ordered set of natural numbers equipped with complete induction.  

From the viewpoint of 1 the perspective is reversed; by symmetry the interpretation must be 

the same.  The neighbourhood of 1 becomes the unordered collection of co-atoms: 

          0 , 1 , 2 , ...  that serves as the analytic partition of this neighbourhood; the 

complements of these co-atoms, the co-co-atoms are equated with the atoms of the 

neighbourhood of 0; this collection: - 

             collection 0 , 1 , 2 , ... as chain 0,1,2, ... . 

is perceived by 1 as a single well-ordered set comprising a single atom that is the 

neighbourhood of 0.  In summary: - 

 5.5 (+)  Principle of symmetry 

From 0                 0 1 2 ... antichain: 0,1,2,... 0,1,2, ... . 

             chain: 0 , 1 , 2 , ...  as a complete well-ordered 

chain, where             
 

1n s n s n .  (Here s represents 

successor.) 

From 1                              antichain: 0 , 1 , 2 , ... 0 1 2 0 ,1,2 , ...  

             chain: 0 , 1 , 2 , ... . 

 

If 0 is a set, then it has a complement.  Likewise, for 1, 2, 3, ... Hence the collection    0 ,1,2, ...  

is well-defined. 

5.5  Representing induction in the analytic lattice 
 

Consider the particular example: - 

          
 

1
1 2 ... 1

2
n n n n  

We see that this takes the form,        n f n g n  where f and g are functions.  Furthermore, 

these reduce to recursive relations: - 
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           

            

     

     
 

, , : 1 2 ... 1,1 , 2,3 , 3,6 , ...

1
, , : 1 1,1 , 2,3 , 3,6 , ...

2

F n x n x x n

G n x n x x n n
 

The problem then reduces to showing that these two relations are extensionally equivalent; 

that is: - 

   
            

               



   

   

, ,

1,1 1,1 , 2,3 2,3 , 3,6 3,6 , ...

1,1 , 3,3 , 6,6 , ...   where 0,0 , 1,1 , 2,2 , ...F G F G x y

F n x G n x

D D D

 

If we interpret the pair  ,x y  to represent an atom of the lattice, then all these expressions 

become disjunctive sets – joins of atoms in the lattice somewhere.  Substitution into the 

formula      
1

1 2 ... 1
2

n n n  will establish particular members of the join 

       1,1 3,3 6,6 ...  but any finite iteration of this process will not enable one to infer that 

the statement is true of all members of this potentially infinite join.  Representing the 

actually finite but potentially infinite join of any member of this sequence by  F GD  we still 

need to join something more to this in order to obtain the actually infinite collection   F GD .  

The inference : - 

    F G F GD D  

is an inference up the lattice and a sound one.  Certainly,     F G F GD D  is true as   F GD  lies 

in the filter generated by  F GD , but we still have to establish the inference as a concrete 

proof.  In fact, we only ever know a statement of the form       because we have a 

concrete proof somewhere that gives us      .  That proof might take place in the logic 

built directly over the lattice, or it might take place in some meta-language about the lattice; it 

might also take place in some logic that cannot be represented by a lattice whatsoever – the 

very possibility that formalists deny. 

Now consider the form of complete induction in general: - 

 
   

 
 



1

1

P

P k P k

n Pn

 

The proposition  1P  represents some lattice point, and defines a filter in it:  1P  .  But 

what lattice point does the proposition     1P k P k  represent in the lattice?  It says, if 

 P k  defines a filter then  1P k  lies in that filter.  This is not a contingent proposition, but 

a necessary one based on some argument concerning the order of the natural numbers: 0, 1, 

2, ... k, 1k , ..., which has no direct representation in the lattice of all finite subsets,  .  

Suppose it did correspond to a lattice point in  , then it would be equivalent to the 

contingent  join  of  some atoms of that lattice.  So  what  is  necessary  would  be  contingent. 
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Furthermore, such a join would still be an element of   and by joining it to  1P  we would 

still not transcend  .  Thus, it is clear that the statement     1P k P k  does not 

correspond to any lattice point in  , and hence, if it is represented at all, it must be a lattice 

point belong to the filter of  .  The atom   embeds into the lattice the whole chain   

together with its synthetic principle of complete induction defined upon it, and thus permits 

in principle the inference         ; here   represents complete induction on the set    

by mapping the well-ordering of    to the succession of natural numbers contained in  .  

In general, the 1-point compactification: -                  adjoins to the atoms 

  the principle of complete induction on   by mapping that set of atoms to the natural 

numbers contained in  . 

5.6  The rule of generalisation 
 

Let us again examine the rule of Generalisation: - 

 
   

P k

n P n
 

For this inference to be sound    n P n  must lie in the filter defined by  P k , so represents 

also a dilution.  In the compact region it is nothing but a switch between names of the same 

lattice point, since  P k  is simply a name of the same lattice point as    n P n .  When it is a 

device for inferring from the compact region into the boundary, it becomes a substantial 

principle, but just for that reason it must be justified.  In practice, we never know that 

   n P n  lies in the filter  P k  unless there is a proof that this is so.  So while we have 

     P k n P n , we only know this if we have      P k n P n  and for that we need a 

special argument that this is so.  This means that where the inference      P k n P n  

transcends from the compact region to the boundary it is a disguised form of mathematical 

induction.  A consideration of the simplest proofs of mathematics will demonstrate this.  We 

infer (subject to Euclidean geometry) that, given an arbitrary triangle,  , that the angle sum 

of every Euclidean triangle whatsoever  is 180º.  This appears to be a classic instance of the 

inference: - 

 
   



 

P

P
 

where  = arbitrary triangle.  But how do we know that an arbitrary triangle is an arbitrary 

triangle? – That whatever applies to this arbitrary triangle applies to all triangles whatsoever?  

There is a disguised implicit induction in the argument that goes something like this: a 

continuous deformation of one triangle into another changes none of  its essential properties. 
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For that to work the class of all triangles must be well-ordered and the continuous 

deformation is an induction argument on this underlying well-ordering.  But this is an 

illustration only; what it shows is that where we have the inference      P k n P n  and 

 P k  is not simply just another name of what    n P n  denotes, then there must be some 

additional justification for it. 

5.7  The inference from any to all 
 

In the lattice any corresponds to a proposition x , which, as Whitehead and Russell [1910] 

explain, is an ambiguous and indeterminate symbol.  Any yet we can operate with it as if it 

were determinate because what we are doing in our minds is substituting an arbitrary 

determinate value for x and working with that – that is a  for some “individual” a.  The 

individual a is any member of the collection of all x that satisfy  ; hence is any member of 

the ideal of finite sets of which it is a representative.   But  x x  correspond to the set of all x 

that satisfy   so it is the closed and bounded totality; in an infinite lattice it is an actually 

infinite set.  Therefore, in the lattice, the two points any and all are not identical.   

 

 
 



  
  



Ideals Infinite sets in the lattice

1 any odd number 1 all odd numbers

2 any even number 2 all even numbers

any finite number any cofinite set

 

 

F (2)

F (1)

[2]

[1]

0

1

2(   )F (  )  2(   )C (  ) 

 

F (1)

boundaryF (1)

compact
proof path

ideal:
domain of

any (1)F 

1

(1)

 

 

We have the relationships: - 

             1 21 1 2 2 ...  
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5.8  The inference all to any 
 

On the principle that all sound inference proceeds up the lattice, the inference from any to all 

is sound; but the inference from all to any proceeds down the lattice, and hence is appears 

possibly unsound.  All to any goes down the lattice; this is because, given any to all, it implies 

that the domain of arguments is well-ordered, so to progress all to any requires the axiom of 

choice. How do I know that an arbitrary object is representative of a whole class of objects?  I 

pick an object at random – what guarantees that another object has the same essential 

properties?  There is implied in this a rule that the objects can be ordered and in progression 

from one object to another no essence is lost.  
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Generic sets 

 

  

 

1 Generic sets 
 

Generic sets were introduced by Cohen [1966] in order to prove (1) that there is a model of set 

theory (ZF) in which there are non-constructible sets, and (2) that the Axiom of Choice is 

independent of the axioms of ZF set theory.  They were introduced in the context of a 

minimum transitive model of set theory. 

 1.1  Definition, transitive set 
 A set is said to be transitive if every one of its members is a subset. 

 Example 

 Ordinals are transitive sets.  For example,  2 0,1  is transitive. 

 1.2  Definition, transitive model 

Let A be a transitive set.  If ,A  is a model of ZF, then it is said to be a 

transitive model of ZF. 

1.3  Theorem 
Let ZF have a transitive model.  Then the intersection of all transitive models of 

ZF is a transitive model of ZFL.  Furthermore, this transitive model takes the 

form L , where   is a denumerable limit ordinal, and hence also denumerable. 

Notation 

The model referred to in the above theorem is called the minimum 

model and is denoted, M . 

 

The concept of a minimal model is problematic.  I note the following points made about it 

from Wolf [2005]: (1) ,L  is not a true model of ZFL because L is a proper class, and the 

completeness theorem does not apply to classes. (2) L is said to be an inner model of ZFL.  

This means that L is a transitive proper class in which all the axioms of ZFL hold.  (3) The 

completeness theorem says that a first-order theory has a model if and only if it’s consistent.  

Thus, if ZF could prove that ZFL has a model, then ZF could also prove that ZFL is consistent, 

which would mean (by Gödel’s second incompleteness theorem) that ZF is inconsistent. The 

minimum model has some relation to a minimal element of an filter in a lattice.  I wish to 

discuss Cohen’s  concept  of  a  generic  set  but to dispense with the difficulties raised by this 
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problematic notion of a minimum model.  In any event the Boolean and Stone representation 

theorems (they are different expressions of the same underlying “fact”, subject to the Axiom 

of Choice) assert such a close relationship between set theory and lattices that one can take 

the lattice to the be the primary object, and the minimum model is a prime filter “defined” by 

a generic sequence of lattice extensions. (See also Chapter 11 for a discussion of definability.)   

I shall start with a lattice L, which, like the minimum model M , has been constructed 

at some definite ordinal level where     0 sup : L .  Any lattice point (corresponding to a 

set) existing in L is therefore constructed at some level below   0 .  The lattice points of L 

are represented by sets of numbers.  For example      0 , 0,1 , 0,2,3  are lattice points.  Each 

lattice point defines a filter.  For example, the filter 0 x  corresponds to the filter which 

contains every set in which 0 appears:            0 0 , 0,1 , 0,2 , ... , 0,1,2 , 0,1,3 , ...x .  This can 

also be denoted,  filter 0 .   

The model shall be countably infinite; hence it cannot be atomic.  [5/4.2]  This makes 

it into a model of the algebra of statement bundles etc.  There are no atoms; however, relative 

to a numbering of the lattice, there is a notional floor to the lattice and this gives notional 

atoms [5/5.8]; this floor can be lowered, so that below any level there is another level.  

Nonetheless, since the model is countably infinite it is built over a partition that can be 

numbered by   0,1,2,... .  Thus, although L is not atomic there is some level in the lattice 

corresponding the singleton sets      0 , 1 , 2 , ... ; these singleton sets contain individuals, 

which are natural numbers m .  It is these singleton sets that correspond to notional 

atoms.  To each individual m  there corresponds a filter x.  Thus each individual 

corresponds to a filter, m x .  For example, 0 x  and 1 x  denote the filters corresponding 

to the lattice points (notional atoms)  0  and  1  which are their infima. 

 

 Example 

0 x  corresponds to the filter which contains every set in which 0 appears: 

           0 0 , 0,1 , 0,2 , ... , 0,1,2 , 0,1,3 , ...x  

To further illustrate... 

   
   
          

 

   



0,1 0,1

0 1

0,1 , 0,1,2 , 0,1,3 , ... , 0,1,2,3 , 0,1,2,4 , ...

x

x x  

 

Because the singleton sets      0 , 1 , 2 , ...  do not represent true atoms, their meets define 

filters.  However, we cannot represent these filters by sets without lowering the floor of the 

lattice. [5/5.8]  Lowering the floor of the lattice means rewriting the lattice so that what was a 

singleton   set   becomes   a   set  with  more  than  one  element  and  new  singleton  sets  are 
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introduced representing the lower floor.  This is also equivalent to splitting the individuals; 

lowering the floor of a lattice is similar to splitting the atom in physics – what was originally 

conceived as incapable of further division is revealed to be a combination of more primitive 

individuals.  Another way of putting this is to say that we embed the original lattice in a new 

larger lattice and the embedding maps singleton sets in the former to non-singleton sets in 

the latter.  Given a non-atomic lattice with singleton sets, we cannot represent their meets by 

other singleton sets, but only by expressions of the form      0 1x x  and so forth.   

 

{0} {1}

{0}  {1}

0

1

{0}   x

{0}  {1}  {0,1} 

{1}   x{0,1}   x

floor of the lattice

 

 

In the metric of the lattice L the lattice point    0 1  lies between 0 and the floor, so strictly 

cannot appear as a lattice point of L.  Nonetheless, the filters  0 x  and  1 x  are defined 

and so is their meet      0 1x x .  So by conjunctions of filters we lower the floor of the 

lattice.  To represent meets such as      0 1x x  as sets, we must split the notional atoms, 

that is, increase the partition, which is what lowering the floor means. 

 

Example 

We may replace the notional atom  0 , 1  and  2  by infinite, incomplete sets of 

atoms, say: - 

           
     
       

  

 

  

0 , , , ,... 1 , , ,... 2 , , ,...

0 1 , , ...

0 1 2 , ,...

a b c d a b d a c d

a b d

a d

 

 Alternatively, we can switch to an interval algebra. [6/2.7] 

 

If the lattice is countably infinite to begin with, then lowering its floor (splitting its notional 

atoms) does not take the lattice extension out of the class of countably infinite lattices.  The 

individuals of a lattice resulting from such a finite or potentially infinite process may always be 

regarded as countable numbers; this being a consequence of the property of   that doubling 

the members of   does not result in a set of larger cardinality: 2  is equinumerous to  .  

To obtain a larger set one must take a limit – that is here, extending the process of lowering 

the floor to actually infinite iterations.  The result is a lattice of greater cardinality than  , 

one that encompasses generic sets. 
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1.4  Lowering the floor of a lattice 
 

The discussion of generic sets is usually based on a distinction between a language, here K, 

and a model M.  The construction can be defined solely in terms of the model, which here is 

replaced by a lattice L, on the principle that every model is a lattice.  I propose to show how 

generic sets may be constructed for any of these.  The specific lattice in question shall be the 

non-atomic lattice of countably infinite lattice points, denoted by 0L , which is also the domain 

of the effectively computable [Chap.7, Sec.3].  Though non-atomic it shall be assumed that 

relative to some language this lattice has a notional floor – that is, a collection of singleton 

sets representing notional atoms.  Because it is not atomic, it is possible to lower the floor and 

obtain lattice points below it.  This is represented by an embedding of the lattice 0L  in a larger 

lattice 1L .  Iteration of this process creates a sequence of lattice extensions 

0 1 1, , ... , , , ...k kL L L L  . We use the language K to discuss the relations between any lattice kL  in 

this sequence and its extension 1kL . 

The language, K, is built over the lattice 0L , with given individuals m and hence 

singleton sets (notional atoms)  m .  To the lattice filter m x  there corresponds the 

statement in K, m x , where m  and x  are said to be labels or names of m and x respectively.  

The expression m x  is a statement of the language K.    

 

 Example 

           0 0 , 0,1 , 0,2 , ... , 0,1,2 , 0,1,3 , ...x  defines a filter in a lattice.  The 

corresponding statement in the language is 0 x . 

 

Thus the language closely matches the lattice, but the language has other statements and 

symbols that enable it to talk about the lattice and so discuss its extensions and embeddings 

in larger lattices.  We introduce the symbol   to denote a relation called forcing between 

statements of K to describe relations between filters in 0L .  Whenever the lattice point q  is 

contained in the filter defined by the lattice point p and the two are connected by a compact 

proof path [6/2.3], this is denoted by p q .   

 

 Example 

 Let  0p x  and   0,1q x .  Then p q . 
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1.5  Forcing 
 

The relation of forcing is such that 

   p q p q   

but the forcing relation extends the idea of deductive consequence of statements p  beyond 

that of deductive inference or its lattice equivalent compact proof path.  The relation of 

forcing is thus connected to that of logical consequence.  If a lattice is not complete then we 

have some lattice points such that     butp q p q  .  The distinction between forcing and 

consequence is as follows.  When we consider consequence, where we have incompleteness, 

we have a prior conception of the lattice L that has non-compact proof paths.  By contrast, the 

forcing language is built over a lattice L that is complete in this sense, but enables one to 

discuss the relation of that complete lattice to other lattices that are generic extensions of it.  

So forcing is a relation between lattices whereas consequence is a relation within a given 

lattice.  We shall see that the forcing relation demonstrates that any countably infinite, non-

atomic lattice must be embedded in another lattice which is complete as a lattice but contains 

non-compact proof paths, hence logically incomplete [See also Chap. 9].  The “must” in this 

last sentence is highly significant.  All analytic relations are contained within a prior conceived 

lattice, and any member of the sequence of lattice extensions 0 1 1, , ... , , , ...k kL L L L  obtained by 

finite iterations of the generic construction also corresponds to an analytic logic built over it.  

But the lattice that arises as the actual limit of this sequence,  
 lim n

n
L L , is not the analytic 

continuation of any of these: it is not derived from the analytic logic of any of these.  The 

process of constructing a generic set, and hence a lattice that is the limit of a sequence of 

generic extensions, is a synthetic relation of necessary truth.  The forcing notion is not a 

property of formal, analytic logic and is not effectively computable. 

We need to demonstrate the general nature of a generic sequence.  We have a lattice 

0L  and a language K built over this lattice and equipped with a relation of forcing   subject 

to the rule  -  p q p q   where p q  iff there is a compact proof path in 0L .  The language 

K is countably infinite and hence all statements of K can be recursively enumerated; this 

corresponds to a recursive enumeration of the lattice points of 0L .  Let 1 2, , ... , , ...kS S S  be any 

recursive enumeration of the statements of K.  These are statements of the form m x  where 

m is a lattice point and x is a filter of 0L .   

1.6  Sets, filters and labels 
 

The relation between sets and filters can cause difficulties, so it is useful to digress to clarify 

what is happening here.  This is because of the nature of the subset / supraset relation.  In a 

countably infinite lattice 0L  with notional singleton sets representing notional atoms, the 

singleton  (atom)  0  defines a filter of which  0  is always a subset of every element.    
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This filter, denoted x, is constructed as follows: - 

             filter 0 0 , 0,1 , 0,2 , ... , 0,1,2 , 0,1,3 , ...x  

Denoting the elements of the filter by y, we have: - 

         iff  0   iff  0y y x y y  

So an equivalent representation of the filter is 0 x , and the corresponding label in K is 

0 x .  This presents x as a large set of which every element of the filter is a supraset of  0 :  

The set  0  represents the minimum lattice point of the filter and is such that for all y x  

we have   0 y .  Likewise, 0 represents an individual that is the notionally unique member of 

 0 .  When we extend this to the construction of a generic set, we obtain q as the generic set, 

but in the expression m q  also represents the filter.  To do so we must assume the Boolean 

prime ideal theorem, which allows any sequence of filters to be extended to a maximal (prime) 

filter.  Here that maximal filter (ultrafilter) is denoted q.   

 

{0}

x  = ( filter {0} )

filter {0}  0    x

{ }g

q  g= ( filter { } )

filter { }    g g q 

 

 

We also have a new notional atom (singleton)  g  such that   g q , and this creates a new 

notional individual g.  The set  g  has a claim to be the “generic set”, though following 

common practice we reserve this designation for q, which is the  filter g . 

 

1.7  Rules for the construction of generic sets 
 

We now establish a series of rules for the generic construction which leads to a series of 

lattice extensions 0 1 1, , ... , , , ...k kL L L L  and the definition of a generic set.  Let this generic set 

be denoted by a in a lattice and let a  be label in K.  Recall that 1 2, , ... , , ...kS S S  is a recursive 

enumeration of all statements of K. 

 

Rule 0 

We start with a consistent set 0p  of statements. 
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From the outset it is useful to recognise that the set-theoretic representation of the set of 

finite conditions 0p  is either confusing or an actual error.  The set 0p  represents some finite 

information about a generic set q, and comprises a finite list of conjunctions of the form 

m q  or m q .  For example: - 

    0 3 , 47 , 932p q q q   

But this customary use1 of curly brackets here is misleading, since 0p  is a conjunction of 

conditions, not a disjunction of them.  That is, we should write: - 

          0 3 47 932p q q q  

so this does not correspond to a lattice point such as  3, 47,932 .  The lattice point 0p  would 

lie below the nodes  3   47 and  932  in the lattice if the lattice permitted it, and not above 

them.  Since       3 , 47 , 932  are already singleton or co-singleton sets, and hence notional 

atoms or co-atoms (primes), the meet        0 3 47 932p  does not lie in 0L ; however, it will 

immediately be embedded in the next lattice up in the recursive sequence, 0 1 1, , ... , , , ...k kL L L L  

obtained by lowering the floor [see Sec. 1.4 above]. 

 

Notation 

I denote a set of statements by kp .  This corresponds 

1. To a filter defined on the lattice and denoted kp  

2. To a lattice point, which is the minimum point of the filter, and denoted kp . 

 

We aim to recursively generate a sequence of statements  kp  that act as successive 

approximations to a statement 


 lim k
k

q p  that defines a set q  corresponding to a generic 

filter (set) q. 

 

Rule 1  

If  1k kS p  then  1k kp p .  Since 


 lim k
k

Q p  this entails kp q . 

 

 Example 

 Let     0 3 , 47 , 932p q q q .  Suppose  1 3S q  then  1 0p p . 

                                                           
1 See, for example, Wolf [2005] p.236, where he uses curly brackets when defining a condition. 
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This rule serves to ensure that kp  lies in the filter generated by q.  We have:    iff  q p p q . 

(Note, lattice points of the sequence 0 1 1, , ... , , , ...k kL L L L  on the left of this, statements in the 

language K on the right, and the relation is inverted.) 

 

 

p
0

p
k

q

p
0

p
k

q

L K

q

p
k

p
0

 

 

On the left we have a supraset relation,   0kq p p  in the sequence of lattice extensions 

whereas on the right we have a subset relation   0kq p p  in the language. 

 

 Rule 2 

 If  k jS S  where  1j kS p , then 

 1. k jp S  (That is, k kp S .) 

 2. k kp S  and k kS p .  This also means kS q . 

 

This rule prevents kp  and q  from being inconsistent sets of conditions.  This in turn means 

that the lattice points to which they correspond cannot be names of the 0 of the lattice; that 

is, neither kp 0  nor q 0 .  This means that q , which is another name for the set  g  is a 

point lying in the neighbourhood of 0 but distinct from 0 and not a member of any countably 

infinite lattice; it lies on the boundary between the neighbourhood of 0 and an ultrafilter 

defined by sequence of lattices: 0 1 1, , ... , , , ...k kL L L L . The correspondent generic filter (set) q 

lies on the boundary between the countably infinite and the uncountably infinite in the lattice 

2 , which is the Cantor set.  

At any finite stage the set kp  is finite (we say “contains finite information”) so there 

are statements S  of the form m q  or m q  that are undecided at this stage.  So we need a 

rule for deciding these statements as they come up in the recursive sequence of statements. 
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Rule 3 

If   1k kS p  then at the stage k – 1  kS  has not yet been decided.  (This means, 

1k kp S  and  1k kp S .)  Then  1k k kp p S .  This entails k kp S  and kq S  

 

This simply says that if at stage k – 1 we have kS  undecided, then we decide kS  at the stage k 

by adding it to the filter kp . 

1.8  Theorem, generic sets cannot be constructed by finite information 
 

Together these three rules applied to a point 0p  create an ideal at 0p .  The generic set 

 


  lim n
n

g q p  lies at on a non-compact path of actually   lattice points distant from 0p .  

There are many such paths winding through the ideal at 0p , and the recursive sequence 

1 2, , ... , , ...kS S S  picks out one of these and homes in upon the limit point  


  lim n
n

g q p .  

There are more than   such paths; the number of paths is an ordinal   such that 

    0
0 2 . 

 
p

0

p
k

p  
k

q q 
 

 

It can be seen immediately that the supposition that the generic set  


  lim n
n

g q p  can be 

constructed at any finite stage leads to a contradiction.  Suppose  kq p .  Then since kp  is 

finite there must be some n  such that both n q  and for the statement   S n q  we 

have    kn q p .  That is     kn q p  and   S n q  is undecided at kp .  Then by Rule 3 

above we have  q n q , which is   n q q ; hence n q .  So we obtain n q  and n q , a 

contradiction.  Hence, the supposition  kq p , that q is constructed at some finite stage is 

false.  This is because q is defined by an inductive procedure that take us out of the sequences 

of lattices  0 1 1, , ... , , , ...k kL L L L   of countably infinite lattice points –  that  is,  it  enables  us  to 
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transcend it – and no analytic process could do that.  So no generic set is “constructible” in the 

sense of recursively enumerable, though it is “definable” in a wider sense.  [See also Chapter 11 

for further discussion of the differences between “definable”, “constructible” and “recursive”]  

The assumption that a generic set is recursively enumerable leads to a contradiction.  Now we 

see that the generic sequence 


 lim k
k

q p  represents an inductive rule for continuing a series of 

lattice points indefinitely below any given lattice point 0p , and the contradiction arises from 

assuming that  


  lim n
n

g q p  can be completed at some definite point, which is the same as 

assuming that a generic set  


  lim n
n

g q p  is completely defined by a lattice point kp .  In 

essence the “non-constructibility” of a generic set arises from the fact that no countably 

infinite lattice is atomic, which entails that there are always lattice points lying below any 

putative atom, and the contradiction arises from assuming that a finite set of conditions kp  

defines an atom.  Only an atom could define  


  lim n
n

g q p  , and no such atom can be 

reached by any finite, that is effectively computable (recursive) procedure.   

As already indicated the generic set q  is defined by a complete sequence of lattice 

points 


 lim k
k

q p   that must be infinite in length (therefore, not compact) and also contain a 

given set of partial information represented by the finite set 0p .  The contradiction 

immediately arises from assuming that a given finite set kp  is sufficient to define q , which is 

equivalent to making   n  where n is finite.  In kp  not all the information is given so there 

must be statements of the form n q  that are true but not decided, but in q  all such 

statements are decided. So we take a generic set q  for which we definitely have n q  but this 

is not decided by kp  and by the rules of the construction of q, this entails that n q .  So it is 

immediately obvious that if there exists a generic set in which every statement is decided, 

then this generic set cannot be defined by a finite amount of information. 

 

2 Transcendental numbers 
 

2.1 Definition, algebraic 
A real or complex number is said to be algebraic if it is the zero of a polynomial 

with integer coefficients. 

2.2  Result 
Every algebraic number   is the zero of some irreducible polynomial f that is 

unique up to constant multiple.  The degree of  , denoted   is the degree of 

the polynomial f 
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2.3  Liouville’s theorem 

Let   be an algebraic number with degree  1n .  Then there exists a  c c  

such that   
n

r c

s s
 for all rationals  , 0

r
s

s
. 

 Proof 

Let  f x  be an irreducible polynomial with root  .  The mean value 

theorem is      
 


   


,

f b f a
f a b

b a
.  On substituting 

r
b

s
 we 

obtain 

  
 

  


   
    


,

r
f f

rs
f

r s
s

 

 Hence, since    0f ,  

           
   

r r
f f

s s
 

If    1
r

s
 the result is trivially true because   

1
1

n

r

s s
.  Then, for 

the non-trivial case, suppose    1
p

q
.  Then   

p

q
,    1

p

q
 

and   1 .  As   1  we have   is close to  .  At   we have 

   0f , so    0f  as   .  That means that    0f , which 

means that for given   there is a    0c c  such that   
1

f
c

.  

Thus   
1

f
c

 where    0c c .  From            
   

r r
f f

s s
 we 

obtain 

          
   

r r
f f

s s
 

 Then substituting   
1

f
c

 gives 

 
      

   

1r r
f

s c s
 

 This gives 

      
 

r r
c f

s s
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But f is irreducible, hence 
   
 

0
r

f
s

 and the integer 
   
 

1n r
q f

s
.  Hence, 

  
n

r c

s s
 as required.2 

 

2.4  (+) Claim 

The condition   
n

r c

s s
 is a forcing condition on a generic sequence; any 

individual g constructed as a result of a generic sequence subject to this 

condition defines an atom g  and a generic set q. 

2.5  Existence of transcendental numbers 

Let 






       !
2 3! 4!

1

1 1 1 1
10 ... 0.110001000000000000000001000...

10 10 10 10
n

n

.  

 Let 

 



  ! ! !

1

10 10 10 1,2,3,...
j

j n j
j j

n

r s j  

Then ,j jr s  are relatively prime rational integers.   

         



   

 
 

             1 !! 1 2
!1 ! 1 !

1

10 1 10 1 1 1 1
10 10 1 10 10 ...

9 9 9 1010 10

jj n
jj jj j j

n jj j

r

s s

 

By Liouville’s theorem, if   is algebraic, then
 

 
1

j

js
, so   must be 

transcendental. 

2.6 (+) Theorem 

   is an atom in the Cantor set 2 , and   filterq  is a generic set. 

 Proof 

Let 1 2, , ... , , ...kS S S  be a recursive enumeration of statements such that 

    
2! !

1 1 1
...

10 10 10n k
S q . 

                                                           
2 Barker [1975] states that an explicit value for c is given by  


 

121
1

n
n h

c
 where h denotes the height 

of  , which is the maximum of the absolute values of the coefficients of f.2 
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Let  

      

 

    

          
    

                
    

0 0

1 1 0

1 12! ! 2! !

0 0 0

1 1

10 10

1 1 1 1 1 1
... ...

10 10 10 10 10 10k k kk k

p p q q

p p p q

p p p q

 

That is  1k k kp p S .  The following diagram illustrates this proof. 

 

p0

p

k

{ }

q = filter { }

undecided statement at pk + 1

p1

+ + +
2! !

1 1 1
...

10 10 10n k
S q

k + 1

p

 

 

 

Let an ideal be defined by the inductive rule: - 

 
        

2! ! 2! 1 !

1 1 1 1 1 1
... ...

10 10 10 10 10 10
k k

q q  

Then  kq p  where k  entails that   is algebraic.  Then by Liouville’s 

theorem 
 

 
1

k

ks
 where  !10k

ks .  But by the preceding result 
 

 
1

k

ks
.  Hence 

 kq p  and q is a generic set. 

Remark 

  could be a binary number as well.  That is, it could be interpreted as a 

binary expansion where 2 1010 2 .  That displays it explicitly as a 

member of the Cantor set via the notion of a binary tree. 

Then    is an element of the boundary of 2 .  [For further discussion of this 

point, see Sec. 3 below] 

 

Burger and Tubbs [2004] (p 9 – 11) make the following comments about proofs concerning the 

transcendence of numbers.  (1) The “Fundamental principle of number theory” is that there 

are no integers between 0 and 1.  (2) If a number   that is transcendental is assumed to be 

algebraic  then  one  can  construct  an  integer  N that  violates  the  fundamental principle of  
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number theory.  (3) With specific regard to Liouville’s theorem: if we find an   that has an 

infinite number of amazingly good rational approximations, approximations so good that they 

violate   
n

r c

s s
 for any choice of n and c, then   must be transcendental. 

 

2.7  Observation 
 

In the proof that   is transcendental we see that at each stage k we construct a rational 

approximation to   such that 
 

 
1

k

ks
, which means that   lies between the floor of the 

lattice and 0.  Hence,   is a number that lies in the interval   0,1  lies in the neighbourhood of 

0 whenever that interval is subject to a partition into   parts.  The sequence 

   0 1 ... ...kp p p  is an attempt to “home in” upon   and is equivalent to the method of 

descent, starting in the neighbourhood of 1 and moving by a recursive process in the direction 

of  .  However,   can never be reached by such a process, and lies on the boundary between 

the neighbourhood of 0 and the next notional atom away from 0 in the partition of   0,1  into 

  parts. 

2.8  The “Fundamental principle of number theory” 
 

As remarked above, Burger and Tubbs [2004] state that the “Fundamental principle of number 

theory” that there are no integers between 0 and 1.  In Kantian terminology this qualifies as a 

synthetic a priori principle [Defined, Chap. 2 / 2.1]: it is impossible to see how such a law 

could be derived from an analytic partition of space; on the contrary, any analytic partition of 

space must rest upon this as a principle. 

2.9  Definition, Liouville number 
 

A Liouville number is any real number   that possesses a sequence of distinct 

rational approximations   1,2,3,...n

n

p
n

q
 such that   

1
n

n

n n

p

q q
 where 

   lim sup n .  It is proven above [2.5] that all Liouville numbers are 

transcendental. 

 

Barker [1975] remarks on the application of  Liouville’s theorem to transcendental numbers 

that  “... any non-terminating decimal in which there occur sufficiently long blocks of zeros, or 

any continued fraction in which the partial quotients increase sufficiently rapidly, provides an 

example.” (p.2)  He comments that in the Cantorian sense “almost all” numbers are 

“transcendental”; they cannot be constructed recursively. 
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Hermite proved in 1873 that the number e is transcendental.  The presentation of his 

theorem that follows here is due to Baker [1975].3 

2.10  Hermite’s theorem 
e is transcendental. 

 Lemma 1 

Let   f x  be any polynomial of real coefficients of degree m.  Let 

     0
t t uI t e f u du  

where t is an arbitrary complex number and the integral is taken over the line 

joining 0 to t.  Integration by parts gives 

   

   

     



 





     

    







0

1

0
0

1

0

0

t t u

t
tt u t u

t
t t u

I t e f u du

f u e f e

f t e f f e

  

and repeated integration by parts gives 

         
 

  
0 0

0
m m

j jt

j j

I t e f f t  

Lemma 2 

Let  f x  denote the polynomial that is obtained from f by replacing each 

coefficient in f with its absolute value.  Then 

      0
t tt uI t e f u du t e f t  

Proof of the theorem 

1. Suppose e is algebraic.  Then there exist integers 0 1, , ... , , 0nq q q n  such 

that 

   0 1 ... 0n
nq q e q e . 

Let  

        0 10 1 ... nJ q I q I q I n  

where  I t  is defined as in the lemma and        1 1 ...
p ppf z z z z n  

and p is a large prime.  Substituting          
 

  
0 0

0
m m

j jt

j j

I t e f f t  we 

obtain: - 

                                                           
3 Baker’s treatment could be said to be “light”.  A fuller treatment is in Burger and Tubbs [2004], though 

that is not more perspicuous.  For the purposes here it is not required to clarify every inference, since the 

aim here is soley is to show that Hermite’s proof constructs e as a generic set. 
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                         

           

   

     

  

 

                     
          
                     
          

 

     

  



0 1
0 0 0 0 0 0

0 1
0 0 0

0 0

0 0 1 ... 0

1 ...

m m m m m m
j j j j j jn

n
j j j j j j

m m m
j j j

n
j j j

m n
j

k
j j

I t q f f t q e f f q e f f n

q f t q f q f n

q f k

 

where    1 1m n p .  We have      0jf k  if   and 0j p k  or if 

  1 and 0j p k .  Hence, for all j, k except   1 and 0j p k  we may 

say that    jf k  is an integer divisible by !p .  Furthermore,  

            1 0 1 ! 1 !
np ppf p n  

from which it follows that if p n , we have    1 0pf  is an integer 

divisible by  1 !p  but not by !p  Then, if  0p q , we have J is a non-

zero integer divisible by  1 !p .  hence    1 !J p  

This establishes one estimate for J  which is based on the first lemma 

and applies on the assumption that e is algebraic. 

2. To obtain another estimate, note that     2
m

f k n  and this combined 

with 

      0
t tt uI t e f u du t e f t  

from the second lemma, gives 

    1 ... m p
nJ q q ne f n c  

where c is independent of p.   

3. If p is sufficiently large the two estimates are contradictory, whence e 

cannot be a root of an irreducible algebraic polynomial. 

2.11 (+)  Theorem 

 e  is an element in the Cantor set 2 , and   filterq e  is a generic set. 

 Proof 

Let   filterq e  be the consequence of everything that follows from the 

assumption that e is the zero of a function f; that is    0f e .  That is 

     iff  0q f e  . 

In the proof of Hermite’s theorem we assume that e is algebraic.  This is 

equivalent to the assumption that f is an algebraic function; hence there exist 

integers 0 1, , ... , , 0nq q q n  such that    0 1 ... 0n
nq q e q e .  This information is 

encoded in a finite set kp , and the assumption is that  kq p .  This assumption 

is shown in Hermite’s proof to decide two contradictory statements.  Given 
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         0 10 1 ... nJ q I q I q I n  

where     0
t t uI t e f u du , we have 

1.   1 !J p  

2.  pJ c . 

Since this is a contradiction violating the Fundamental Principle of Number 

Theory, these statements cannot be so decided.  Hence  kq p  and q is a generic 

set. 

k

L K

q

p
k

q  e = { }

q e= filter {  }

  J   c  J  p> (   1)!

p   e (  is algebraic)

+ + + =0 1 ... 0n
nq q e q e

k


p

 

To show that  e  is in the Cantor set, we invoke the principle that all real 

numbers may be represented by infinite sequences of 1s and 0s.   

 

The assumption that e is algebraic is equivalent to the claim that  e  can be constructed at a 

finite ordinal level k ; but whatever finite ordinal level is chosen, corresponding to a lattice 

point kp , there is a contradictory statement at that level. 

2.12  Generic sets and the solution to the halting problem 
 

Let q be the filter (generic set) defined by   n  = the productivity of the most productive n-

state Turing machine.  This corresponds to a complete set of forcing conditions q  since every 

statement of the form   :nS n m  is decided in q .  Now suppose this information is 

encoded in a finite set kp , so that  kq p  for some k .  Then the following statements are 

decided at this level. [Chap. 3 / 1.5] 

     

   

  

 

  

  

0 2

1 3

1 1 1

47 100 11 2

S S n n

S S n n
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These all correspond to lattice points in the lattice 2  and are contained in the filter kp .  

They constitute a set of forcing conditions   0 1 2 3kp S S S S  and lead to a contradiction.  

Hence  kq p  and q is a generic set.  By mathematical induction we know that the filter q can 

be defined.  Hence, mathematical induction is a synthetic principle of reasoning and Poicaré’s 

thesis is upheld. 

3 “Location” of the generic set 
 

Consider the real number e that is defined by a generic sequence in a language K describing a 

sequence of generic filter extensions 0 1 1, , ... , , , ...k kL L L L  all of which are algebraic and hence 

isomorphic to    F 2 , the filter of a finite subsets of  .  Then e is a transcendental 

number that is the individual belonging to an atom  e  of some larger lattice L  that is also 

defined by the same generic sequence that defines e.  We see that  e  cannot be an atom of 

the Cantor set     0,12 2  even though it is a member of this set.  This follows from the 

1-point compactification:           .  The atoms of 2  are either the singleton sets 

of natural numbers   ,n n  or     , and we have  ,e n n  and e .  So the generic 

sequence for e defines a (transcendental) real number that is not an atom of the Cantor set 

 2 2  though it is in correspondence to an element of it.   It is an atom of lattice generated 

by the Cantor set – every member of the Cantor set is an atom of this lattice, which is the 

lattice generated by the continuum of real numbers.  The atoms are singletons of real 

numbers. 

 In logical terms the generic sequence has defined an element of a non-standard model 

of arithmetic.  (See Boolos and Jeffrey [1980] Chap. 17)  Non-standard models append to the 

sequence of natural numbers elements that are not natural numbers; for example, 

  0,1,2, ... , ... , , ,a b c  where a, b, c are not natural numbers.  Non-standard models violate 

 -consistency [Defined Chap.9 / 1.10].  In fact, we see that              0,1,2,...,  

is itself a non-standard model of arithmetic.  This is the fundamental reason why first-order 

logic is not categorical and obeys the upwards and downwards Löwenheim-Skolem theorems, 

because the language permits the definition of non-standard models, and indeed essentially 

so, since we use it to define transcendental numbers. 

The only member of    0,1,2,...,  that could be defined as an individual by any 

generic sequence is      itself.  We will see in Chapter 9 that Gödel’s theorem itself defines 

     and hence demonstrates that      cannot be recursively enumerated as an actual 

infinity.  Its members can be recursively enumerated, but as an actually completed totality it 

cannot be constructed – which is self-evident, because we could never have done with counting 

all the natural numbers and a machine couldn’t do this either.  Unlike machines we can 

conceive of this totality even if we cannot count all its members. 
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CHAPTER 9  
 

 
Incompleteness and Poincaré’s thesis 

 

  

 
 

1 Gödel’s first incompleteness theorem 
 

1.1  Gödel’s first incompleteness theorem 
There is a formula Q of a sufficiently strong [defined1.6 below] theory K that is 

not provable. 

 

It is the task of this section to explain the terms involved in this theorem, and to demonstrate 

its proof.  Gödel’s theorem is the main counter-example to formalism and establishes 

categorically the validity of Poincaré’s thesis.  In order to demonstrate this, we require a 

detailed and annotated version of the proof of this theorem. 

 

Notation 

In what follows we use the Greek letters,   , , , ...  to denote variables.  

We do this in order to maintain a clear distinction between formulae 

and variables.  In the discussion that follows we shall have a need to 

introduce several kinds of formula, so we use the following as variables 

for predicates:  , , ... , , , ...X Y  . 

1.2  Substitution of terms 

Consider a formula     where   is a variable.  Then we may substitute a 

constant a for   to obtain   a .   

Definitions, term,   operator  

A term is any formula that may be substituted for a variable.  Terms 

include: (1) Constants, a, b, ...; (2) Other variables:  , , ...  

(3) Formulas involving other variables: - 

 3.1 Unbound variables:    . 

 3.2 Definite descriptions: - 

  3.21 “The (unique) y such that  ”:       . 

  3.22 “The least x such that  ”:       . 

   This involves a   operator . 
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1.3  Predicates and sentences 
Formulae are divided into predicates, terms and sentences.  A sentence (or 

proposition) arises from the combination of a predicate with a term.  Suppose   

is a predicate.  Then to form a sentence we must adjoin to it a term a to obtain 

an expression of the form  A a .  The predicate may be viewed as an 

uncompleted sentence – a sentence with a gap in it that can be filled by a term.  

Thus we may write      where the unbound variable   represents the gap 

in the predicate.  A sentence is a completed predicate.  To make a sentence one 

must substitute for an unbound variable in the predicate either a term or a 

bound variable.  Thus   a  and        are sentences.  In first-order predicate 

calculus all sentences arise from the completion of predicates and there are no 

exceptions.  However, we sometimes wish to introduce a label for sentences that 

does not express their internal structure.  In that case we may use , , , ...A B C .  We 

shall use P and Q to denote very specific sentences that shall be defined below.   

1.4  Numbers and numerals 
The theory under consideration is a sufficiently strong [1.6 below], first-order 

theory, K.  Such a theory is capable of expressing number-theoretical 

statements.  For example, let:        is even .  In this expression   a , a 

denotes an individual that is even, such as 2.  However, a is not the number 2 

but denotes the number 2.  A term that denotes a number is called a numeral.  

In most contexts it is not necessary or normal to distinguish numerals from 

numbers.  Here, it is important to do so.  If n  is a natural number then n  is 

the numeral that denotes n.  For example, 2  denotes 2.  If     is the predicate 

denoting the property of being even, then the expression “2 is even” is 

represented by   2 .  Thus,   , , , ...  are used here to range over numerals, as 

opposed to numbers.  We also use , , ...n m  as variables in this sense. 

1.5  Gödel numbering 
Gödel numbering is a mapping from formulae to natural numbers.  

  


 

Formulae
Gn

Gn
 

The notation  Gn  is useful because it emphasises the role of Gödel 

numbering as a function transforming a formula into a natural number; 

however, we shall find it convenient to introduce another notation for this: 

     Gn .  Thus     represents the Gödel number of an arbitrary formula  .  

It is possible to define several Gödel functions by different specifications of  the  
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way in which numbers are assigned to particular symbols of the language, but 

every such definition must contain two steps. 

(1) Each logical constant, variable, predicate letter, functional symbol or 

constant is assigned a distinct natural number.  No two such symbols 

are mapped to the same number. 

 (2) Given the expression 1 2, ,...., ru u u , we define its Gödel number to be 

              
1 2

1 2, ,...., 2 3 ..... ruu u
r ru u u p  where rp  is the ith prime number. 

 

The function, Gn, is a one-one mapping, meaning, that given an formula A we may assign to it 

one and only one natural number n, and given any natural number n we may apply the inverse 

of Gn to determine what, if any, expression or symbol it represents.  The Gödel function 

allows us to arithmetize logic. 

1.6  Definition, Sufficiently strong 
A logic K, is sufficiently strong, if the two concepts symbolised by: - 

   Pf , Sub , ,x y x y z  

are recursive (or primitive recursive) and can be represented by a Gödel number.  

 Pf ,x y is interpreted to mean “x is the Gödel number of a proof of the formula 

with Gödel number y”, and  Sub , ,x y z  is the Gödel number of the formula 

obtained from the formula with Gödel number x, by substituting for the variable 

with Gödel number y, if it occurs free in x, the formula with Gödel number z.  In 

the expression  Pf ,x y , x and y are variables ranging over numbers, and not 

formulae or numerals.   

1.7  Concerning the proof that K is sufficiently strong 
 
To prove that K is sufficiently strong we have to prove that  Pf ,x y  and  Sub , ,x y z  are 

recursive.  In a rigorous proof we begin with the notions of addition and multiplication, which 

are in fact primitive recursive, and by successive stages we construct formulae which are 

recursive and which ultimately define the notions  Pf ,x y  and  Sub , ,x y z .  The formulae by 

which we define these successive concepts are formulae of quantification theory with identity; 

we therefore require as a preliminary for Gödel’s theorem, a proof of a theorem that shows 

that the use of the symbols of quantification theory, and also bounded quantifiers and 

  operators  [1.2 above], does not take us out of the class of recursive or primitive recursive 

functions.  Such a theorem does in effect give us the “glue” with which to stick the formulae 

of our definitions together.  The definition of each of the concepts involved proceeds in two 

steps: (i) we provide a formula which, using only notions already defined, expresses the 

concept in question; (ii) we prove, or verify, that the formula thus obtained is recursive.  In 

many cases this second part follows directly;  in others,  we  have  to  apply either recursion of  
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“course-of-values recursion”.  In course-of-values recursion the definition of a function 

 1,...., , 1nf x x y  depends on several of all values of  1,...., ,nf x x u  where u y . Here we will 

not provide precise proofs that  Pf ,x y  and  Sub , ,x y z  are recursive.  For  Pf ,x y  and 

 Sub , ,x y z  to be definable by recursive functions a theory, K, must possess the following 

properties: - 

1. The theory is able to represent [see Chapter 11] the functions   and . 

2. The underlying logic is first-order quantification theory with identity. 

3. The Gödel function is defined for the theory. 

These three properties together confer the property of sufficient strength on K.1  K is also 

such that: - 

4. The axioms of K are recursive, and hence K is axiomatizable. 

It is assumed that K possesses these four properties, so K is sufficiently strong and 

recursively axiomatisable.  Another statement of Gödel’s Theorem is, then, the following: - 

(I) If a theory, K, is consistent, axiomatizable and sufficiently strong, then it is 

incomplete. 

(II) The theory K is axiomatizable and sufficiently strong; we also assume that it is 

consistent. 

1.8  Getting started on the proof 
 
Let   X  denote the Gödel number of  X X . 

Let   Y  denote the Gödel number of  Y Y . 

Let     denote the Gödel number of the concatenation of a sequence of formulae: 

      1 2 ... n . 

Let        Pf , X  denote the Gödel number of a proof of X from the sequence  .  Here proof is 

a relation between a sequence   and a formula X.  It may be written  X .   In the usual 

notation  X  we have   is a set of premises.  In  X ,   represents the whole finite path, 

from some minimum lattice point,  , below which it is not possible to proceed, to X.  We have, 

             Pf , X X .   The proof relation   is assumed to be that of the language K in which  

                                                           
1 For a more formal presentation of what sufficient strength means, we have the following result from 

Mendelson [1970]: Result, general applicability of the Gödel-Rosser theorem:  Let K be the first-order 

theory of arithmetic for which the Gödel-Rosser theorem holds.  Let K  be another theory with the same 

symbols as K.  Suppose 

1.  Every recursive relation is expressible in K . 

2.  The set of Gödel numbers of proper axioms of K  is recursive 

3.  For any wff  A x  and any natural number k:                  0 1 ...K A A A k x x k A x  (This is 

complete induction.) 

4.  For any natural number k,    K x k k x  

Then the Gödel-Rosser theorem [2.4 above] holds for K . 
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the proof is written.  When we wish to emphasise the presence of K we write this  K X .  

Here the expressions “language” and “first-order theory” may be used interchangeably.  Let 

           Sub , ,X Y  be the Gödel number formula obtained from the formula  X X  by 

substituting for the variable   (if it is free in X) the formula  Y Y .  That is, 

                  Sub , ,X Y X Y 2 .  

1.9  The distinction between object- and meta-language 
 
We are discussing the properties of an object language K within a meta-language, represented 

by natural language and equipped with the logic and reasoning of elementary number theory.  

We do not give this meta-language a name as such.  The object language K is sufficiently 

strong.  This entails that any recursive property or expression of the meta-language has a 

corresponding wff in the object-language.  In the meta-language we have properties and 

individuals.  The only individuals that concern us are numbers.  The argument involves going 

backwards and forwards between the meta- and object-languages.  Therefore, we have to be 

careful to distinguish those expressions that belong to the meta-language from those that 

belong to the object-language.  An expression in either the object- or meta-language cannot be 

of mixed type.  The general distinction is as follows: - 

 

meta-language object-language

numbers numerals

terms

number-theoretic properties predicates

natural language statements sentences

natural language logic first-order logic

 

 

We need some devices to keep the distinction clear.  We already have the distinction between 

Gödel numbers and the formulae they represent.  Thus   X  is the number (meta-language) 

that represents the wff formula X (object-language) and conversely.  Also n  is the numeral 

(object-language) representing the natural number n (meta-language).  We need an additional 

device to map back natural language statements in the meta-language to the wff in the object-

language that represent them.  For this we use the underscore.  For example        Pf , X  in 

the meta-language is read “     is the Gödel number of the sequence of formulae   that prove 

the formula X, whose Gödel number is   X ”.  This natural language statement corresponds to 

the object-language formula  X .  Therefore, we may write          Pf , X X . 

                                                           
2 This is very similar to the process familiar from mathematics of a change of variables.   
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1.10   Definition,  - consistency 
Let K be a first-order theory.  Let n  denote the numeral representing the number 

n .  Suppose  for every  then K Kn A n     x A x .  Then K is said to be   -

consistent. 

The effect of  -consistency is to rule out non-standard models of arithmetic.3 

1.11  Outline of proof 
 
We define a particular sentence: - 

                     Pf ,Sub , ,P x x X X X  

We let    k P  - that is k is the Gödel number of P.  Let 

       Pf ,Sub , ,Q x x k k k  

and let    m Q .  We claim, provided the theory K is  -consistent, that m is the Gödel 

number of a formula that is not a proof of itself. 

1.12  Demonstration 
 

To show this we merely have to work through the series of correspondences these definitions 

produce between formulae   and their Gödel numbers     on the other. 

 
   

 

 



  

  

  
    



  1 2

Godel number, / meta-language Formula, /  object-language

, ,... , , ... numerals denoting numbers

, , ... variables for numbers , , ... variables for corresponding numerals

...

Pf

n

n k n k

x y x y

X X X

 
    

     
     

          
    

     
  







 





      

          

               

                 

                  

   

     

,

Sub , ,

Pf ,Sub , ,

Pf ,Sub , ,

Pf ,Sub , ,

Sub , ,

Pf ,Sub , ,

Pf ,Sub , ,

X X

X X X X X

X X X X X

X X X X X

k P P x x X X X X X

k k k P P

k k k P P

k k k P P











   
          



        Pf ,Sub , ,m Q Q x x k k k P P

 

                                                           
3 In a non-standard model we add entities that are not numbers to the domain of numbers.  For a 

description see Boolos and Jeffrey [1980] Chapter 17. 

 Chap. 9 ] GÖDEL’S FIRST INCOMPLETENESS THEOREM [ Sec. 1 



© Peter Fekete ] 244 [ 06 Oct. 2011  

 

In the above table of correspondences we observe that   P X X , hence: - 

    P P P P  

On substituting   Q P P  into this we obtain: Q Q . 

Since    m Q  then m is the Gödel number of a formula that is not a proof of itself.4  

1.13  Lemma 
If K is a sufficiently strong,  -consistent, first-order theory, then: - 

  nor K KQ Q  . 

Proof 

Let K be a sufficiently strong,  -consistent, first-order theory.  Then the 

sentence                Pf ,Sub , ,Q k k k  

is a definable wff [see chapter 11] in K. 

 (1)  KQ  

The proof of this part, which does not depend on  -consistency, is by 

contradiction. 

 
 

 



       

   



1. Assumption

Then, there exists a , .

So, there exists an  such that  is the Godel number of a proof-sequence of 

Let  be this number; that is .  Then Pf , .

Then Pf , .  

K

K

K

Q

Q

x x Q

n n n Q

n Q Q







   
   

       
   
 

   

   

       

   

Hence

2. Pf ,

Letting ,  this gives Pf ,

3. Pf ,

4. Pf ,

5.

K

K

K

K

x x Q

m Q x x m

x x m x x

Q Q x x m









    is a contradictionK KQ Q Q

 

                                                           
4 The function   X X  is known as the norm in the literature.  For example, the various treatments by 

Smullyan [1992 and 1994]  Let TK  denote the set of Gödel numbers of theorems of K.  Let this be 

representable by an recursively enumerable (RE) formula  A x . Let u be the Gödel number of  A x .  i.e. 

    A xu .  Let  D u  be a function such that, if u is the Gödel number of a wff  A x  with free variable 

x, then  D u  is the Gödel number of  A u .  It can be shown that  D u  is primitive recursive.  

Then             D X X X .  It is equivalent to            Sub , ,X X X  in the previous arguments.  Smullyan 

demonstrates the following result: If K is consistent and  D u  is representable in K then TK  is not 

expressible in K. 
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It is useful to explain the expression       Pf ,K x x Q  by showing how it would be decoded.  

Starting with       Pf ,K x x Q  we find the n  which is the numeral such that    Pf ,x Q  is 

true.  We map this back to the unique number n that it denotes.  Then    n  for some proof 

sequence   of Q.  So this gives us  Q .  Note that the statement K Q  means that Q follows 

from no contingent premises.  But we expect to derive Q from the axioms of the theory K by 

using the rules of inference, so K Q  means  K Q  where   is a proof sequence from the 

axioms.  The second part of the proof requires  -consistency. 

(2)  K Q  

1.

2.

K Q



    

by the consistency of 

3. For every , Pf ,

4.

K

Q K

n n Q

          Pf , by consistency and 

5.

K x x m m Q

                Pf ,

6.

K x x m x x

 

7.  and 

K

K

Q

Q  

8.

K Q

  by reductioK Q

 

1.14  Proof of Gödel’s first incompleteness theorem 
K is incomplete 

Proof 

Consider the expression 

                 Pf ,Sub , ,  is not provablex x Y Y Y  

We have just supplied an instance of            Sub , ,Y Y Y  which cannot be 

either proved or disproved.  Hence this statement is valid.  Specifically, 

we have:      Pf ,  is not provablex x m  where    m Q .  Therefore, Q 

is valid but not provable.  That is, we have  but not K KQ Q  .  Hence, K 

is incomplete. 

 1.15  Is the meta-language a conservative extension of the object-language? 
 

The “location” of this proof is a matter of considerable debate in the literature.  The proof 

demonstrates K Q  and does so on the basis of a finite proof path; but the question is – does 

this proof take place in the object-language or the meta-language?  Regarding this specific 

question, which is controversial, it is fortunately not necessary to decide, since we shall soon 

see that there is a generalised version of this theorem that could not possibly be proven an any 

formal, analytic object-language whatsoever, so the precise status of this proof is not critical to 

the debate.   
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 However, I shall express an opinion.  Clearly this proof does not take place in the 

object-language itself, and the real question is whether it takes place in a meta-language that is 

a isomorphic copy or at most an isomorphic copy of a recursive extension of the object-

language – a meta-language that is itself also recursively axiomatic.  The question is whether 

the meta-language ever requires principles that “go beyond” those of the analytic, formal 

object-language.  For circularity is the very essence of formalism [Chap. 1 Sec. 7]  Formalists can 

only ever “justify” any mathematical statement by reference to more formalism, so they shall 

never regard themselves as refuted unless it can be formally demonstrated that there is a 

meta-language that cannot be embedded within the object language or be regarded as a 

recursive extension of it.  The argument above does not demonstrate this, and to do so 

requires a further proof.  [See Section 4 below and Chapter 11] 

 

2 The Gödel-Rosser theorem 
 

The conclusion of Gödel’s theorem is dependent on  -consistency.  It is, however, possible to 

construct another sentence, that we shall denote Q , that is undecidable in a sufficiently 

strong theory, K, assuming only that K is consistent. 

2.1  Consistency property 

For any wff  ,     . 

(If K is complete, this can be strengthened to a biconditional,       .) 

2.2  Outline of proof 
 
Recall that        Pf , X  means     is the Gödel number of a sequence   proving the formula 

X  with Gödel number   X .  We now define        Pf , X  to mean     is the Gödel number of 

a proof of the formula X , where X is the formula with  Gödel number   X .  So 

          Pf , X X .   We then define a particular sentence: - 

                                           Pf , Pf ,P X X  

This involves several backwards and forwards moves between the object- and meta-languages, 

so will need to pay careful attention to how it is constructed below.  We let    k P  - that is k 

is the Gödel number of P .  Then substitute k for   X  in P  to obtain: -  

                                        Pf , Pf ,m Q Q k k  

and let     m Q .  We claim, provided the theory K is consistent, that m is the Gödel number 

of a formula that is not a proof of itself. 
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2.3  Demonstration 
 

We once again begin by working through a table of correspondences that clarify the meaning 

of the statements P  and Q . 

 
 
 

 



  

  
         



Godel number, / Formula, /  

object-languagemeta-language

, ,... , , ... numerals denoting numbers

, , ... , , ... variables for corresponding numerals

, ,  represent proof sequences

Pf

n k n k

x y x y

X X X

 
 

 
     

 

 

      

        

         

                            

             

 

          

,

Pf ,

Pf ,

Pf , Pf ,

This is equivalent to

If  proves , then there exists a shorter proof of 

P

X X

X X

X X

X X

X X

X X

k P P







 

     

       

                            



                                 

f , Pf ,

If there is any proof of , then there exists a shorter proof of 

Pf , Pf ,

If there is any proof of , then there exists a

X X

X X

m Q Q k k

P  shorter proof of P  

 

This clarifies the meaning of the formulae involved.5 As in the proof of Gödel’s theorem, we 

prove this in two parts: - 

 

(1)  KQ  

The proof of this also falls into two parts.  We construct one argument to show R , where R 

is a statement, and then a second argument to show R . 

Let                                             Pf , Pf ,P X X  and 

                                   Pf , Pf ,Q k k  

Suppose K Q .  Then  

                                                           
5 It is an arithmetised version of Grelling’s paradox. [See also Chap. 14] 
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   

 

     



  
   



  
      

                                 

I 1.  

 is the Godel number of .

2. Pf ,

Let  be the Godel number of a sequence proving .

3. Pf ,

Substituting  for  in 

 Pf , Pf ,

K

K

K

Q

Q Q

x x Q

j Q

j Q

Q X

P X X







 

       

     

   

   

 

                                   

                   

             

              

we obtain

Pf , Pf ,

Whence

4. Pf , Pf ,

Then by detachment

5. Pf ,

Let Pf , .  So we have 

K

K

Q Q

j Q j Q

j Q

R j Q





 KR

 

 
 

 



 


  

         



II 1.

The consistency property is .  Hence

2.

This means that for every natural number , Pf ,

is false.  Recall that Pf ,  where .  Hence, 

3. For every numeral , Pf ,

K

K

K

Q

Q

n n Q

n Q H Q n H

n n



 





   

     
     

 

  



              

                 

            

.

As in (1) let  be the Godel number of a sequence proving .  Then

4. Pf 0,  and Pf 1,  and ... and Pf ,

5. Pf 0, Pf 1, ... Pf ,

6. Pf ,

K K K

K

K

Q

j Q

Q Q j Q

Q Q j Q

j Q

  



  
   

   
 



      

              



Quantifier logic has .  Hence

7. Pf ,

That is

K

K

x y x y

j Q

R





 

The supposition K Q  leads to the contradiction  K R R , whence K Q . 

(2)  K Q  

Suppose K Q .  Then 

       

        

 



                           

                                         



  

1

That is, Pf , Pf ,

Where  and Pf , Pf ,  

Let  be the Godel number of a sequence proving 

2. Pf ,

The consis

K

K

K

Q

k k

k P P X X

j Q

j Q

�� 





  tency property is .  Hence 
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 
 

 
     
   

  

  

   

              

          

3. Pf ,

So Pf ,  is false for all natural numbers .  Hence

4. For every natural number , Pf ,

5. Pf 0,  and Pf 1,  and ... and Pf ,

6. Pf 0, Pf 1, ..

K

K

K K K

K

j Q

n Q n

n n Q

Q Q j Q

Q Q





  

  
   

    

     

. Pf ,

7. Pf ,K

j Q

y j y Q

 

 
   
      

      



  

     

      



       

Now consider

.  by hypothesis

. Pf ,  from line 2

. Pf ,  by , ,

. Pf ,  from  by 

Then from  by the deduction theorem, we have

8. Pf ,

K

K

K

K

K

A j y

B j Q

C j y j Q A B I

D z z y z Q C I

A D

j y z z y z Q











 

   

        

  

           

   

The following line states a theorem of any sufficiently strong theory 

9.

Combining line 9 with the results at 7 and 8, we have

10. Pf , Pf ,

By the tautology 

11. P

K

K

K

K

y j j y

y Q z z y z Q

p q p q







         

          

          

           





f , Pf ,

By generalisaton

12. Pf , Pf ,

This just is .  We have a contradiction.  Thus

13.

K

K

K

y Q z z y z Q

y y Q z z y z Q

Q

Q







 

2.4  Gödel-Rosser first incompleteness theorem 

As in the first version of this theorem:  but not K KQ Q  . Hence, K is 

incomplete. 

2.5  Corollary 
Let K be any consistent, sufficiently strong theory.  Then every consistent 

recursively axiomatisable extension of K is subject to the Gödel-Rosser 

Theorem, and therefore has an undecidable sentence.  That is, K is essentially 

incomplete. 
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3 Analysis and interpretation of Gödel’s theorem 
 

Let K be any consistent, sufficiently strong theory.  K is a formal analytic logic and therefore 

has a model; this model is a lattice, L, and K is the logic that is built over this lattice [see 7/2.2 

for justification of the assumption that the model is a lattice].  K is not complete; hence the 

lattice L must differ in some significant way from any lattice in which a complete theory is 

realised.  We have seen that the maximal lattice of a complete theory is  CF , which is the 

Boolean algebra of the finite and co-finite subsets of  .   CF  is a proper subset of 2 , the 

Cantor set, and the difference between the two,   CF2  constitutes the boundary between 

the two parts of  CF , which are isomorphic copies of the prime ideal of all finite subsets of 

 ; we write       CF 2 2 .  In terms of the Klein bottle model [6/4.9] of the Cantor set, the 

two parts of       CF 2 2  correspond to the two sides of the Klein bottle with boundary 

  CF2 .  It is a feature of this model that while both sides of the model can be accessed 

from each other by paths lying wholly on the surface, which is globally one-sided and non-

orientable, those paths are non-compact and infinite, being equivalent to a path of ordinal 

length  .  A sufficiently strong theory adds the boundary to  CF  and transforms the 

model into 2 , or at the least some minimal version of it that is consistent with the notion of 

a boundary.6  A sufficiently strong theory embeds a principle of complete inductive reasoning.  

However, the partition on which the analytic logic is based, namely the subdivision of an 

interval   0,1  into at least   actual parts, results in notional atoms represented by the 

individual singleton subsets,      0 , 1 , 2 , ... , but these are not ordered, for if so they were they 

would generate a chain rather than a lattice.  The property of sufficient strength imposes 

upon this structure an additional external structure of the well-ordering of the natural 

numbers.  This is encapsulated in the model by the presence in the one-point compactification 

           of the chain     , where   and   represent the antichain over 

which the analytic logic is constructed. 

The embedded inductive procedure provides a two-step process that enables one to 

pass directly to the boundary, which is equivalent in the Klein bottle model to attaining the 

boundary by passing through it to a generic set.  Induction in the meta-language enables one 

to show that there are generic, “non-constructive” yet definable sets lying in the boundary [See 

Chap. 11 for a discussion of definability].  Among these are objects corresponding to singleton 

sets of transcendental numbers; the solution to the Halting problem is also a non-

constructible  generic  set.  So  induction  as  a rule of reasoning transcends the domain of the 

                                                           
6 The exact determination of the minimum model of a sufficiently strong theory is likely to depend on the 

solution to the continuum hypothesis. 
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effectively computable analytic logic built over  , which is isomorphic at most to 2 .  Let   

represent the axioms of any sufficiently strong language, K; let L be the lattice corresponding 

to K; let   represent the least lattice point of a filter in L.  Note, we think of L as the Cantor 

set, 2 .  Then Gödel’s incompleteness theorem corresponds to the following diagram 

of L 2 : - 

 



0

1

¶




2(   )

floor of the lattice - notional atoms

ceiling of the lattice - notional co-atoms
or Boolean primes

2(   )


K

K

K

 

 

Here the shaded part corresponds to the region of the lattice proven to exist by Gödel’s 

theorem where we have    but   .  This diagram is already an intuitive proof of 

Poincaré’s thesis – for we “see” immediately that the boundary is an inalienable feature of the 

Cantor set and that it could never be either eradicated or imported into the domain of the 

effectively computable, which is at most       CF 2 2  or an isomorphic copy thereof.  

Parts of the boundary could be mapped into       CF 2 2  but never all of it: the 

boundary is inexhaustible.  Gödel’s theorem therefore establishes the synthetic conclusion 

that there exists a boundary within the lattice corresponding to any sufficiently strong formal, 

analytic lattice.  However, formalists will never agree until this result is formally established: 

this can be achieved by several different though related methods. 

 

4  Proof of Poincaré’s thesis from Gödel’s theorem by induction in the 
meta-language 

 
The counter-argument to the possibility of such a proof of Poincaré’s thesis is stated by J.J.C. 

Smart: - 

 

Suppose that a machine, by observing its own linguistic behaviour could ascertain 

its own syntax ... There is pretty certainly no a priori argument of the Rosenbloom 

or similar sort against the possibility of such a machine.     If such a machine were  
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able to ascertain its own syntax it could presumably, if it had enough storage 

units, progressively keep on adjoining new syntax languages to its own 

programme, converting itself from an 0L  machine to an 1L  machine to an 2L  

machine, and so on indefinitely...” (Smart [1961]) 

 

He cites Quine as an authority and states that Quine has a purely mathematical rebuttal: - 

 

He [Quine] has pointed out to me that a machine which was programmed with a 

set of axioms for elementary number theory could be modified by adding on as 

an additional axiom the corresponding Gödelian undecidable sentence, or the 

arithmeticised form of the sentence, to the effect that the axioms and rules are 

consistent.  This process could be iterated and the general method for 

constructing the Gödel sentence at any stage could itself be mechanised so as to 

produce an axiomatisation of elementary number theory.  This process could be 

continued through all the constructible ordinals.  There would nevertheless 

always be a Gödelian undecidable sentence. (Smart [1961] – from the concluding 

paragraph.) 

 

My underlining.  The possibility that Smart refers to here is as follows.  Let 0K  be a 

sufficiently strong first-order theory.  Then there exists a formula 0Q  of 0K  such that 


0 00 0 K KQ Q  .  Then  1 0 0K K Q  is consistent and in 1K  we have 

1 0K Q .  The claim is 

that we can generate 1K  recursively from 0K .  This latter claim is made on the assumption 

that the proof of Gödel’s theorem we have given above takes place entirely in the meta-

language which is arithmetic and first order; that all the objects generated are done so 

recursively, and so forth.  This is probably valid.  Hence it is also valid that we can recursively 

generate 1K  from 0K , 1nK  from nK .  Smart claims, “This process could be continued 

through all the constructible ordinals”.  Actually, the meta-language, being arithmetic, does 

not have constructible ordinals, and the induction appropriate there is complete induction 

over the natural numbers,  , which is appropriate, because we would like to keep the 

mathematics in the meta-language out of the actual infinite – this being one interpretation of 

“finitism” [1.2.1 and 14.2.3].  Nonetheless, even granting Smart transfinite induction over all 

constructible ordinals, that is not sufficient to establish the principle that the proof of Gödel’s 

theorem is recursive (effectively computable).  This Smart acknowledges in his concluding 

words from the passage underlined above, “There would nevertheless always be a Gödelian 

undecidable sentence.”  This is equivalent to the observation on the diagram about that there 

will always be a boundary in the Cantor set.  The form that Smart takes Gödel’s theorem 

explicitly in his paper is: - 

4.1  (+)  One step Gödel’s theorem 

Let 0K  be a sufficiently strong logic.  Then    
0 0

 and K KX X X   
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But this is not Gödel’s theorem – as indeed the argument from Smart’s own paper implicitly 

indicates.  That is why I have called it the one step Gödel’s theorem.  Gödel’s theorem is a proof 

by induction in the meta-langauge that  

 4.2 (+)  Universal Gödel’s theorem 
 Let K be any sufficiently strong logic.  Then: - 

 

        K KG K X X X �   

 

G is asserted absolutely without restriction to class or set.  We have a proof in the meta-

language of this assertion.  We could write G �, where   denotes the metalanguage.  I shall 

show that the relation   is not in the object language, where the relation is denoted K .   

4.3  Theorem 
G is not a deductive consequence of any formal analytic logic. 

Proof 

Now suppose there exists a recursive language *K  (with corresponding lattice *L ) 

such that     ** KK G .  In other words, we try to embed the proof of G into a 

compact domain with finite proof paths.  Then: - 

 

     
   
 

 

  

  

 





*

*

* * *

* * *

* * * *

* *

Substituting * .

Letting  were  is the specific Godel sentence

  

  * *

K

K K K

K K K

K K K

K K K K

K K

G

K X X X

X X X K K

Q Q X Q Q

Q Q

Q Q



  � 

  � 

  � 

  �  

 � 

 

 

This is a contradiction.  Therefore, *K G .  The line at  * *  uses two rules in the 

metalanguage that are intuitively self-evident and can be further clarified as follows: - 

  

1. Let Y be a proposition of a lattice K, then 

  is true of  for all filters  in KY K Y K �  

The statement Y is in the meta-language.  It implies no specific relation 

between points in a lattice and is therefore asserted absolutely of all 

lattices.  If any statement Y is asserted absolutely in the meta-language 

then it necessarily implies that Y is true every lattice and true for all 

filters whatsoever.  Every lattice and filter whatsoever is a model of Y.  

This rule is abbreviated to: Y Y� 
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I shall call this principle concatentation of consequence, since it allows 

the symbol to be attached in front of any other symbol asserted 

absolutely or in the form Y�.  From this rule it follows that 

  iff  Y Y �  . 

 2. Suppose X  .  Then 

 
 

 

  

  



Definition

Consistency  and  are inconsistent.  Here 

Rule for proofs iff  

X X X

X Y Y Y X

X X X

X

   

   

  



 

 

Formalists take the view that any given axiom is recursive.  Let A be an axiom; 

then we A A , which seems to confirm their point. But suppose we attempt to 

adopt G as an axiom and write GG G .  The Universal Gödel theorem, applied to 

itself, yields the conclusion G GG G G G  .7  GG G  says that there is a path 

in a lattice G from G to G.  As the path is simply the point G what this shows is 

that G cannot be a point in any lattice whatsover.  The metalogic in which there 

is a proof of G is wholly different from any analytic logic.  It is not a relation in a 

lattice.   

4.4  Theorem 
 There exists a synthetic logic. 

 Proof 

G is true for all lattices that correspond to sufficiently strong languages, K.  So 

we have K G �.  Together with the statement, K G  this yields: - 

 

     and K KF K G G �   

 

So G and F are statements that are true but are not analytic proofs of any lattice 

whatsoever.  In the above argument the statements G and F are necessarily true.  

Therefore, their contraries cannot be adopted as axioms.  Therefore, there is a 

synthetic logic.  

4.5  Observation 
 

Suppose we have a sufficiently strong logic K, then there is a Gödel sentence Q for K.  We are 

not forced to adopt Q as an axiom because  there  is  still  an  element  of  choice in the matter. 

                                                           
7 This is highly reminiscent of the Liar Paradox which is not surprising, since Gödel’s theorem is explicitly 

constructed on the idea of arithmetising the Liar paradox.  This invites further investigation of the Liar 

paradox itself, which follows below [Chapter 10],.  However, the “paradox” can be resolved independently. 
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However, if we wish to ascend to a stronger theory in which Q can be proven, then we can only 

do that by appending Q as an axiom.  It is not consistent to add Q .  So there is only one 

consistent extension of the theory.  We ascend to K Q  but in doing so generate a second 

Gödel sentence, and so on, ad infinitum.    

4.6  Turing’s investigation 
 

We have to consider the possibility that Gödel’s incompleteness result may be overcome by 

means of an ordinal logic, which was the suggestion that Smart, quoting Quine, also claimed 

could prevent the conclusion that there exists a synthetic logic.  This idea was investigated by 

Alan Turing when he was set the problem by Alonzo Church as a Ph.D thesis at Princeton, 

where Turing was between 1936 and 1938.  It was carried out in Church’s  -calculus. 

Before examining Turing’s conclusions, let us observe, as we did above [4.10.4 et seq] 

that it is always trivially possible to overcome the incompleteness result.  When discussing the 

proof of the completeness of the predicate calculus,      , I observed that if one 

lengthens the proof paths so that     iff     then completeness becomes true by 

definition.  So every lattice is trivially complete.  Actually, the incompleteness result is a 

question of the relation between lattices and their embeddings in each other.  To say that the 

lattice       CF 2 2  is incomplete means that it does not contain all its infinite meets and 

joins and can be embedded in a larger lattice that does.  In a sufficiently strong logic K the 

presence of a form of complete induction permits the definition of generic sets that actually 

construct from within the logic the lattice points that do not belong to  CF ; we can now 

appreciate that this is the product of synthetic logic, and it is clear that all completion 

arguments are aspects of synthetic logic, as I shall discuss further below.  [15/4.2] 

Nonetheless, there is a sense in which the Cantor set, 2 , is trivially complete, both as 

a logic and as a topology.  Yet this provides no comfort whatsoever to formalism or to 

advocates of Strong AI, because the proof paths from finite to generic sets are decidedly not 

finite or compact in the formal sense.  Hence, they are not computably effective.  Whenever 

one has to complete an actual infinity then there is a break down of effective computability.  

One has transcended the maximally effectively computable domain,  CF .  Again, an 

expression like  e  where e is the usual transcendental number, is grasped in consciousness 

as a finite object referring to an actual, completed infinite process, but cannot be generated 

mechanically as such.  The whole philosophical problem arises from the philosophical error 

that assumes we must interpret denotation as given wholly in extension.  Meaning transcends 

extension. 

However, lest even now this be disputed, let us examine the conclusions of no lesser a 

person than Turing [1939] himself on this question, both in his own words and as reported by 

Feferman [1988].  In that paper, Turing introduces the idea as follows: - 
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The well-known theorem of Gödel 1931 shows that every system of logic is in a 

certain sense incomplete, but at the same time it indicates means whereby from 

a system L of logic a more complete system  L  may be obtained.  By repeating 

the process we get a sequence  1 2 1, , , ...L L L L L  each more complete than the 

preceding.  A logic L  may then be constructed in which the provable theorems 

are the totality of theorems provable with the help of the logics 1 2, , , ...L L L  . 

Proceeding in this way we can associate a system of logic with any constructive 

ordinal.  It may be asked whether such a sequence of logics of this kind is 

complete in the sense that to any problem A there corresponds an ordinal   

such that A is solvable by means of the logic L . 

 

He also states that it is trivial to show that there exist complete ordinal logics.  The non-trivial 

case collapses on the problem of invariance: - 

 

Invariance of ordinal logics.  An ordinal logic   is said to be invariant up to an 

ordinal   if, whenever  ,  are ordinal formulae representing the same 

ordinal less than  , the extent of     is identical to the extent of    .  An 

ordinal logic is invariant if it is invariant up to each ordinal represented by an 

ordinal formula.” (Turing [1939] p.200) 

 

I shall prove that an ordinal logic   cannot be invariant and have the property 

that the extent of     is a strictly increasing function of the ordinal 

represented by  .” (Turing [1939] p.203.) 

 

The ultimate conclusion is: - 

 

... with almost any reasonable notation of ordinals, completeness is 

incompatible with invariance. (Turing [1939] p.209.) 

 

Feferman describes the upshot thus: - 

  

The demand on intuition on recognizing “which formulae are ordinal formulae” 

is greater than Turing realised. The work “was subsequently done, at the 

suggestion of Kreisel 1958, by restricting attention, successively, to those 

notations a for which one has a proof in bL  for some b Oa  that a O  (i.e., 

that a represents a well-ordering).  These have come to be called autonomous 

ordinal notations, and the notion of ordinal logic restricted in this way, 

autonomous recursive progressions of axiomatic theories. (Feferman [1988] 

p.131) 
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And in conclusion: - 

 

It is easily shown that the  aL  [a autonomous] is recursively axiomatizable and 

hence incomplete by Gödel’s theorem.” (Feferman [1988] p.131)   

 

So ordinal logics do not solve the problem of incompleteness. 

 

5 Proof of Poincaré’s thesis from Gödel’s theorem by consideration of 
generic sequences 

 

I refer again to the following diagram: - 

 



0

1

¶




2(   )

floor of the lattice - notional atoms

ceiling of the lattice - notional co-atoms
or Boolean primes

2(   )


K

K

K

 

 

Considering the Gödel sentence, Q, for which we have,  but K KQ Q  , the question I wish to 

consider is: where in the lattice does Q appear?  At first glance K Q  affirms that Q is true of 

every filter whatsoever, and hence must be a name of 1, that is a member of the equivalence 

class  Eq 1 .  Members of this class are joins of 1, where each 1 is equivalent to the law of 

excluded middle.  But Q cannot be recursively generated in the list of joins, so must represent 

a non-recursive infinite list of 1s.  This is intriguing because it shows that the elements of 

 Eq 1  cannot be recursively generated in their entirety, yet we know and can prove that Q is a 

member of this class.  This points strongly to the existence of a logic of intensions that enables 

us to establish the extensional equivalence of concepts even where no mechanical process for 

this could possibly exist. 

Reflecting momentarily on the finite case, consider yet again the finite Boolean 

algebra 42  based on a partition into four disjoint atoms              1 2 3 41 , 2 , 3 , 4 .  Let  
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Ax2  denote the axioms of the propositional caculus.  These may be conjoined to any lattice 

point; for example,   1 1 Ax2 .   The axioms are true of all filters whatsoever, hence true in 

  filter 1 ,   filter 2 , and so forth; hence true in the meets of all these filters: 

         1 2 3 4 .  But in 42  this meet does not exist, save as the 0.  The expression means 

true in the intersection of the filters, which is in   1,2,3,41 , which is what we expect as the 

axioms Ax2  are a name of 1. 

The Cantor set, 2  is generated by a partition of   0,1  into           .  The 

partition of     into notional atoms      0 , 1 , 2 , ...  allows for the definition in the language 

K built over the lattice of their meet:        0 1 2 ...  .  This meet is not in the lattice  CF  

but does define a generic element in the complete lattice in which it is embedded.  This 

element is not identical to 0, being not the meet of all the atoms (   has been left out.)  If it 

did equal 0 the lattice would collapse to 0 and the whole system would be inconsistent.  The 

consistency of the system is maintained by the rule         0 1 2 ... 0 .  Let 

         0 0 1 2 ...  represent this meet.  This places 0  below the notional floor of the 

lattice.  Let   represent an arbitrary filter in the set of all finite subsets of  .  Now we have 

0 0K Q  and 0 0K Q .  This places 0Q  above the boundary between the finite subsets of  , 

 F ; it is a member of every filter of  F .  Let    1 0 0Q ; we have  1 0K  and 

1 0K Q .  This information can be represented diagrammatically: - 

 


floor









0

1

n

n + 1

Q

Q

Q

Q

0

1

n

n + 1

1

0  
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The effect of the omission of the atom   from the ideal  F  is to make Q be seen from 

within  F  as lying above the boundary   but in a position below 1.  Iteration of the 

construction    1n n nQ  creates a generic sequence of lattice points,  0 1, , ...  all lying in 

the neighbourhood of 0 but not identical to it.  The effect of each iteration of this process is to 

move each nQ  inside the upper boundary   of the ideal; the boundary is never eliminated by 

this process. 

Let  G n
n

, where the limit is taken over all n  or all transfinite ordinals (as 

desired).  Then the assumption that G is encoded by some finite information,  G n  leads to 

a contradiction; hence G is a generic set: G is doubly transcendent generic set, because no 

complete recursive process can ever construct it – not even as an element of the Cantor space, 

2 .  G can never be reached by any iterative process whatsoever, we conclude that  G , 

which is the boundary between the finite and infinite subsets of   and can never be an 

element of any set whatsoever.  The existence of G is demonstrated by the Universal Gödel 

theorem, which is a synthetic proof by mathematical induction in the meta-language.  There is 

no possible way in which the existence of G could be demonstrated from within effective, 

formal, analytic logic; it is not possible to derive the existence of G from any mere partition of 

space. 

 

6 Proof of Poincaré’s thesis from Gödel’s theorem by means of fixed 
points 

 

A proof is a finite sequence of formulas from a starting point, one that is included in the 

sequence, to its terminal point.  A proof corresponds to a finite sequence of points in a lattice.  

Proof paths proceed up a filter with each higher lattice point being a dilution of one below.  

Let   , ,i j i j  be notional atoms: - 


 

i

i j




 

Allowing   to be multiple premise and multiple conclusion, all premises can be combined 

into a single point p in the lattice by meet, and all conclusions belong then to the finitely 

generated filter of this point.  Denote this finitely generated filter by p  .  Hence a proof from 

p is a compact path in p  .  Let   be a proof path in p  , which means it must start at p.  

Then        Pf , X  says, “the formula X with Gödel number   X  is a member of p  “.  To 

illustrate further the relation    X X  , first let us encode by Gödel numbers the canonical 

one-step proof: - 
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
 

i

i j




 

This is the concatenated sequence: - 

   i i j  

Looking at one standard version of Gödel numbering in more detail, Gn first codes the 

separate formulas i  and  i j  to numbers    i in  and     2 i jn  and then the 

sequence    i i j  to 
       2 3 i ji .  There is a homomorphism from the sequence of 

formulae   1 2 ... ns s s  to the formula   1 2 ... ns s s ; note here 1s  is the formula denoting the 

base of the filter,   1 2 ... ns s s  is the path in the filter and ns  is the conclusion – the formula 

that is proven from 1s .  Note    1 2 ... nt s s s  is a proof of t from t, equivalent to the law of 

identity t t .  The homomorphism 




       1 2 1 2

proof paths formulae

... ...n ns s s s s s
 

is a homomorphism of finite proof paths to lattice points.  In other words: -  

6.1 (+)  Result 
Every finitely generated lattice point is the name of a finite proof path and 

conversely.  

 

Let us show this in an alternative way. Given the encoding: - 

 




       1 2 1 2

proof paths formulae

... ...n ns s s s s s
 

 

Then our canonical one-step proof    i i j  becomes       i i j i .  In other words 

every lattice point p is a name for its finitely generated filter p  , and every proof path in this 

filter is logically equivalent to this name p.  So the Gödel numbering is an encoding of all finite 

proof paths into the natural numbers.  All finite proofs are finitely generated lattice points 

and Gödel number maps lattice points to numbers.  Therefore the domain of        Pf , X  is 

  2  and under Gödel numbering: - 

 

   
           Pf , :X 2 . 

 

2  is an ideal in 2  and there are lattice points in 2  that correspond to actually infinite 

subsets of  .  The concept of Gödel numbering is essentially based upon the isomorphism of 

structures all represented by 2 . 
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





 







 







 

Power set Prime divisors Atomic propositions  

 

Now observing that every proof path is logically equivalent to the minimum lattice point in 

which it lies, and contracting the collection of all proof paths to these lattice points, we see 

that every lattice point is the name of an equivalence class of compact proofs and every 

compact proof belongs to such an equivalence class.  Hence, there is a one-one pairing of 

these equivalence classes and the natural numbers that is given by the diagonalisation 

argument. 

         
         
         
         









1 1

Lattice points  equivalence Natural numbers  

classes of compact proofs

1 2 6 7 ... ...0 1 2 3 4 ...

3 5 8 ... ... ...01 02 12 03 13 ...

4 9 ... ... ... ...012 013 023 123 014 ...

10 ... ..0123 0124 0134 0234 1234 ...

... ... ... ... ... ...

. ... ... ...

... ... ... ... ... ...

 

6.2 (+)  Gödel numbering as a contraction mapping 
 

So let us take the above mapping as our canonical representation of Gödel numbering.  Then 

Gödel numbering is a contraction mapping of the ideal 2  onto its floor of notional atoms.  

By symmetry (duality) we may extend this mapping to the filter of co-finite sets in 2  onto its 

ceiling of notional co-atoms (Boolean primes). 

 

0

1

floor

ceiling

2(   )F (  ) 

0 1 2

01 02 12

012 013 123

(0) (1) (2)

(01) (02) (12)

(012) (013) (123)

2(   )C (  ) 
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In this diagram the atoms      0 , 1 , 2 , ...  are represented by digits, 0, 1, 2, ...; and the co atoms 

         0 , 1 , 2 , ...  by      0 , 1 , 2 , ...  . 

This contraction mapping represents re-labellings of the atoms: each lattice point 

originally in    F 2  becomes a new notional atom.  Hence Gödel numbering in this sense 

is equivalent to the process earlier defined as lowering the floor of the lattice.  [5/5.8 and 

7/1.6]  We see automatically that whenever the floor is lowered what results is just another 

lattice that is isomorphic to the original.  The process of lowering the floor never enables one 

to transcend the lattice, here 2 . 

6.3 (+)  The effect of automorphisms of the Cantor set 
 

The symmetry engendered by the duality of the inversion of the order relation of the lattice 

introduces into 2  a line of symmetry, that is its boundary.  The sufficient strength of the 

language enables the definition of automorphisms of this space [Chap. 11 Sec. 2] which have 

fixed points or lines of symmetry.  The simple reflection of 2  that maps      : F C  and 

conversely, has a line of symmetry, which swaps all elements of the boundary as well, for we 

have     .  The line of symmetry is not a set in the lattice, but exists nonetheless.  Since it 

does not exist in the lattice its existence could never be demonstrated by analytic inference 

within a filter of the lattice; it is not a formal consequence of analytic logic, though it is a 

property of one, provided it has sufficient strength; the existence of the symmetry is 

demonstrated by synthetic logic, here derived from geometric intuition and analogy. 

6.4 (+)  The extended Gödel map 
 
The question is: can we extend this form of Gödel numbering given above [6.2 above] to the 

whole lattice, 2 ?  The ideal    F 2  and filter    C 2  are both equinumerous to 0 , so 

the bulk of 2  is contained in the boundary, here shown by the line joining the atom   to the 

co-atom  .  The boundary is a huge set of cardinality 02 .  If such an extension of Gödel 

numbering to the whole of 2  is possible, the contraction of the compact part  CF  to the 

floor and ceiling result in a dilation of the boundary as it expands to fill the “space” left by the 

contraction.  This is possible because infinity is inexhaustible. 

Proof paths in    F 2  are compact, and hence bounded above by the 

indeterminate   ; when we enter the boundary region we find lattice points that all represent 

infinite collections of the notional atoms we can start over the process of building compact 

proof paths.  The elements of 2  are all subsets of  .  The quotient algebra 




2

2
 partitions 

2  into segments each of which is isomorphic to 2 .  A dilation of the boundary would map 

some collection of these 2  into the space originally occupied by    F 2 . 
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The atom  is excluded from the filter    F 2 .  If it were included the filter would 

comprise the entire Cantor set, 2 .  The Cantor set comprises all subsets of  .  Since the 

ordinal   1 ,   1 2 .  If we assume the Axiom of Choice, then the whole of 2  can be 

well ordered, so there is an  1th lattice point.  After   the transfinite ordinals continue: - 

  

        

       

    

 2 2 3 3 4

1, 2,... , 2, 2 1, 2 2, ... , 3, 3 1, ... , 4, ... , 5, ... ,

, 1, ... , , 1, ... , , ... , , ... , , ... , , ...
 

These may act as names of the lattice points.  When we do so we use the convention of an 

overbar to indicate this; for example,  1  indicates the name of the   1 th  lattice point.  

We need a countable basis for the next filter up, and this is provided by   1, 2, ... ; but 

    2,  must be excluded from this basis, for otherwise the basis becomes actually infinite 

and the lattice generated over it becomes uncountably infinite   02 .  So 2  must be the 

name of a set that is a member of the atom   and the resultant is a sub-lattice,  1F , 

isomorphic to     0F F  that can be mapped into  0F  by an extended Gödel map.  

Likewise, the next filter up,  2F , will be the one with basis   2 1, 2 2, ...  and the extended 

Gödel maps moves this filter into the one with basis   1, 2, ... ; the extended Gödel map 

is a systematic “shunt” of the partitions of the boundary towards the floor.  By symmetry it 

also systematically shunts partitions of the boundary that are closer to the ceiling (in terms of 

the metric) towards the ceiling.  It maps: - 

 

 


 

 0 0

1 1

* * *
Gn

n n n n

F C

F F C C
 

The sets denoted  *  and  * *  have to be clarified.  The map  0 *F  is onto the notional 

atoms of 2  and these are       * 0 , 1 , 2 , ...  and not   0,1,2,3, ... .  Similarly, we have 

            * * 0 , 1 , 2 , ... .  
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first atom in the lattice
{ } = 10

0

+ 1

lattice point

Gn

Gn

Gn height = + 1

2

3

F (   )

th

0  

F (   )1

F (   )2
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The length of a proof path from a lattice point to another lying it its filter shall be defined to 

be the minimum length of the path, where length is measured by the metric [Chap. 4 Sec. 5] of 

the lattice.8 The maximum length of a proof path to a lattice point is its height above 0.  The 

diagram shows the filter  0F  .  Informally we may describe this extended Gödel map as a 

“contraction” of the region    CF 2  onto   and a “dilation” of the boundary.   

6.5  Definition, contraction 

Let :f M M  be a map on a metric space  ,M d  onto itself.   Then f is a 

contraction if there exists a constant  1K  such that       , ,d f x f y K d x y  

for all ,x y M . 

 

Formally, Gn as defined above, is not a contraction mapping, because the distance between 

lattice points is not always contracted.  Therefore, we cannot apply the Banach fixed point 

theorem to this mapping: - 

6.6  Banach fixed point theorem 

Let :f M M  be a contraction of a complete metric space M.  Then f has a 

unique fixed point x M . 

 

This is to be expected, since the fixed points are not unique.  The Cantor set is a complete 

metric space, but we can see that Gn has more than one fixed point.  Under the specific 

definition for Gn given above     Gn 0 0 , making  0  into a fixed point.  However, we shall 

show below [See 6.7 below] that   is a fixed point. 

Lattice points in  0F  are finite lattice points that are numbered in some increasing 

sequence.  For example, the lattice point  2,3,4  corresponds to the number 9, in our 

sequence.    The numeral 9  is a name of the lattice point  2,3,4 .     Another representation of  

                                                           
8 The metric on 2  is the natural one defined in terms of height [4.5.8].  If ,p q 2  then 

      ,d p q h p h y .  With each lattice point x there is associated an ordinal  , which is its order 

isomorphism type – the ordinal to which it is similar.  The ordinal to which the maximum of the lattice, 1, 

corresponds is at this time unknown, since its determination is equivalent to a solution to the continuum 

hypothesis.  The height of a lattice point p 2  is its ordinal, which is its height above the zero, 0, of the 

lattice.  The dual lattice where meets and joins are interchanged is an exact copy of 2  - only inverted.  

The map from the lattice to the dual is a reflection in the boundary, mapping all of  F  to  C  and, 

given the Boolean Prime Ideal theorem,     .  Hence 2  is subdivided into two regions  , the 

maximal ideal of  F  and  , the maximal filter of  C .  The ordinal height above 0 of any element in 

p  is greater than the ordinal height of p1  above 0.   
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lattice points uses ascending primes; thus  2,3,4  could be represented by   2 3 5 30 , and 

named by 30 .  A logic that is sufficiently strong permits prime factorisation, and hence 

implicitly encodes the natural numbers as a chain, as opposed to an anti-chain of partitions; it 

is this that permits Gödel numbering to be defined.  Because of the presence of a chain and 

anti-chain defined over the same base set   0,1,2,3, ...  the underlying lattice is forced to 

adopt a complex structure that is equivalent to that of the Cantor set, 2 .  This structure is 

partitioned into analytic disks, each isomorphic to    F 2  upon which has been overlaid 

the possibility of a synthetic movement by complete induction that attains its boundary with 

is complement.  Compact proof paths in the same analytic disk never attain the boundary, for 

that is the same as recursively reaching the last natural number, which is synthetically known 

to be impossible, though not analytically. 

The lattice point named by  cannot be moved by the extended Godel map, Gn.  It 

belongs to  .  The Gödel function cannot be defined for  ; this is because  cannot be 

factorised into prime factors.  For the same reasons all multiples 

      
...2, 2, 3, ... , , ... , , ... , , ...  denote lattice points belonging to  .  Hence all lattice 

points whose names are the additive, multiplicative, and exponential Hauptzahlen belong to 

 .9  In that part of the filter  F   that lies above  ,   takes on the role of the 0, relative to 

all compact paths whose height is  . 

                                                           
9 The operations of addition, multiplication and exponentiation are associated with certain numbers called 

Hauptzahlen that characterize them.  (1) For addition, the Hauptzahlen are those numbers   0  such that 

     for all   0 .  Denote the set of all Haupzahlen by   ; i.e.        iff + = .  The smallest 

such   is 1, since  1 0 1.  It is the only finite  .  The next is   since for all v  we have     .  

Each Haupzahlen is irreducible and is therefore an additive prime number.  (2) For transfinite ordinal 

multiplication let   1  be such that      for all   such that   1 .  Then  2 1 2  so 2 is a 

multiplicative Hauptzahlen and the only finite such.  The multiplicative Hauptzhalen are only a part of the 

irreducible numbers, and only a small number of these are actually prime numbers.  Of these that are 

both irreducible numbers the finite primes and   are examples.   Transfinite multiplicative Hauptzahlen 

are called  -numbers.  Each  -number is also an additive Hauptzahlen.  The smallest transfinite 

multiplicative Hauptzahlen is  .  Every limit number with exactly two factors and the irreducible limit 

numbers are also  -numbers.  Other  -numbers exist of the form  1  where   is an additive 

Hauptzahl.  (3) For exponentiation, the  -numbers are the Hauptzahlen of exponentiation, which are 

solutions to the equation   .       


     0

0lim , , , ...  is the least of all such  -numbers.  The 

sequence    is a well-ordered set of type   and hence of power 1 .   
lim  is also an  -number. 

Every  -number greater than   is the limit of a sequence of multiplicative Hauptzahlen.  The necessary 

and sufficient condition for determining the  -numbers is the equation   2 . 
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6.7  Arithmetical hierarchy 
 

Another version of the extended Gödel map can be defined without recourse to the Axiom of 

Choice.  This is by means of the hierarchy of definable sets [See Arithmetic hierarchy – Chap.2 

/ 2.4.2].  Let 1 2, , ...R R  be an enumeration of all recursive relations of two variables: 

  ,R R x y .  The domain of each is   .  Then let an actually infinite set be defined by 

    ,x R x y .  To give a concrete example, let     , 2R x y x y ; then 

          , 0,2,4,... 2x R x y , where this is an actually infinite set, not co-finite, and hence 

belongs to the boundary.  Such sets are said to be 0
1 .  As they can be recursively enumerated, 

there is a countable basis of them that can be used as a skeleton to generate a filter.  The dual 

to this filter is the ideal     ,x R x y , which are denoted 0
1 .  The next filter up from 

 0
1filter  is the  0

2filter  comprising subsets of   corresponding to definitions of the form 

       , ,x y R x y z  defined on the domain     .  By iteration of this process we obtain a 

partition of the filter  F  , and dually for the ideal defined on  C .  The extended Gödel 

map, by numbering the lattice points in each filter, maps 0
1  to  , and in general 0

1n  to 0
n .  

Unlike the previous partition based on the Axiom of Choice, this partition does not cover the 

whole of the boundary, because not every set is definable in this sense.  However, the partition 

is infinite and hence the extended Gödel map defined upon it is inexhaustible.  In this case, 

the class of indefinable sets is never moved by the extended Gödel map. 

6.8  Fixed points 
 

The lattice is 2  and it is partitioned into the finitely generated part of countable unions of 

subsets of 2  and denoted 2  and its complement is  2 2 .  We have: - 

 

 

 


 

 0 0

1 1

* * *
Gn

n n n n

F C

F F C C
 

 

Every lattice point in  0CF  is the name of a compact proof,  X , path in 2  and 

corresponds to a Gödel number,        Pf , X . Hence: - 

 

              Gn:   iff  Pf ,X CF X  

 

The filter     0F F   is given by        : A2   were A is the set of atoms of 2  - 

that is,  it is the set of all finite lattice points that can be reached by compact proof paths from  
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finite atoms of 2 .  The lattice points in  0C  also denote finite proof paths. The 

complement of       
0

CF CF   is      
0

CF CF2   - it is the set of all lattice points 

that do not denote compact proof paths from any atoms.  This may be denoted         Pf , X .  

This states: - 

 

 
 

        
 

Pf , iff  is not a compact proof of 

iff filter

X X

X
 

There are two ways in which we can have         Pf , X : - 

  

1. There can be a proof of   X , only it is not compact, and  

2. There is no proof whatsoever of   X . 

 

Now Gn maps       
0

* * *CF  and shunts all the other filters  CF  where   is an 

ordinal. 

 

F (   )
0

F (   )
1

F (   )2





*

**

C (   )0

C (   )
1

C (   )2

2

 

 

The atom      could not be moved by Gn.  This is because   cannot be factorised.  

Therefore, it is a fixed point of Gn.  Furthermore, if this atom is ever was moved into 2  after 

k iterations of Gn, then we have a proof of everything that lies in the filter generated by  .  

That would amount to a proof of every formula corresponding to an infinite set whatsoever, 

so would entail the inconsistency of all mathematics.  This shows that if mathematics is 

consistent then we cannot move the fixed point.     As 1 lies in  Fil  then mapping   into 2  
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would provide a compact proof of what was originally an uncountably long proof of the 

inconsistency of mathematics.  The same applies to  .  If we ever move either   or   into 

the compact region as a result of a mapping f then we shall have mapped the infinite into the 

finite and therefore have exhausted the infinite.  This will result in inconsistency.  Thus the 

embedding of arithmetic within an analytic formal logic is consistent only if   and   are 

fixed points of Gn. 

6.9  Interpretation of the Gödel sentence 
 

Let          0 0 1 2 ...  be a sufficiently strong theory true of all atoms in  .  Let 0Q  be 

the Gödel-Rosser sentence relative to 0 .  Then  0 0 0Q Q  and 0 0Q .  0Q  is not a 

lattice point that can be reached by any compact proof path in   - this is what  0 0 0Q Q  

means.  But          0 0 1 2 ...  represents all the atoms of the partition whatsoever except 

 ; so what else is there to infer up the lattice from 0  except  ?  There is nothing else that 

can be added to be inferred.  Hence 0Q .  But      is the atom that adds the set   as a 

chain equipped with complete induction to the lattice.  Hence we may interpret 0Q  as a well-

ordered set with complete induction.  Gödel’s theorem, 0 0  but 0 0 , may be 

interpreted as saying complete induction cannot be inferred from a formal analytic logic, and 

one cannot (in the absence of the Axiom of Choice) obtain the chain   from the antichain   

that is equinumerous to it.  Gödel’s theorem is true precisely because Poincaré’s thesis is true.  

The underlying facts on which it is built is this: a chain is not an antichain and the potential 

infinite is not actually infinite. 

We can form a succession of versions of the chain  :   0 1 2, , , ...  and import these 

into the lattice.  For example, when we form first-order Peano arithmetic [Chap.2 / 2.12] we 

import a potentially countably infinite but actually finite number of these into the compact 

part of the lattice, adding them there as particular instances of the chain   and its associated 

principle of complete induction.  Gödel’s theorem shows us that we could never exhaust the 

potential of complete induction by such a process – for there will always be a   in any lattice 

corresponding to a sufficiently strong logic.  Thus, Poincaré’s thesis is upheld. 

We also see why there are two versions of Gödel’s theorem – two Gödel sentences – 

the one that permits violation of  -consistency [Sec. 1 above] and the other that does not 

[Sec. 2].  We saw in the chapter on generic sets that generic sequences define transcendental 

numbers that are elements of non-standard models.  Therefore, there is a version of Gödel’s 

theorem that permits this, and there is a version that does not.  It is the Gödel-Rosser 

sentence  Q that disallows non-standard models; the Gödel sentence, Q, permits any 

member of the boundary as an element of a non-standard model of arithmetic that 

demonstrates the incompleteness of first-order arithmetic.  In first-order arithmetic we can 

create generic sequences, and hence we cannot rule out non-standard models.  That is why 

first-order arithmetic fails to be categorical. 
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